Tools and Techniques for
Computational Economics

Thomas J. Sargent and John Stachurski

Jun 13, 2024

CONTENTS

Linear Algebra 3
Linear Algebra 5
L1 OVerview o o e e e e e e e e e e e 5
1.2 VECIOTS . . . o i o o e e e e e e e e e 6
1.3 MatriCes . . . ¢ v v o e e e e e e e e e e e 14
1.4 Solving Systems of Equations e e e e e 16
1.5 Eigenvalues and Eigenvectors L 21
1.6 Further Topics o o e e e e e e e e e e e 24
1.7 EXEICISES . . . o v v i v i e e e e e e e e e e 26
QR Decomposition 29
2.1 OVEIVIEW . . . o o i e e e e e e e e e e 29
2.2 Matrix Factorization e e e e 29
2.3 Gram-Schmidt ProCess . . . v v v v v e i e e e e e e e e e e e e e e e e e e e 29
24 SomeCode e 31
2.5 Example . .. oL e e e e e e 32
2.6 Using QR Decomposition to Compute Eigenvalues 34
27 QRandPCA e 35
Circulant Matrices 37
3.1 OVEIVIEW . . . o o o e e e e e e e e e e e 37
3.2 Constructing a Circulant Matrix o e e 37
3.3 Connection to Permutation Matrix e e e 39
34 Exampleswith Python e e 40
3.5 Associated Permutation Matrix oL L e e e e e e e e 44
3.6 Discrete Fourier Transform 0. L e e 46
Singular Value Decomposition (SVD) 53
4.1 OVeIVIEW oo e e e e e e 53
4.2 TheSetting e e e 53
4.3 Singular Value Decompositiono e e e e e 54
4.4 Four Fundamental Subspaces ot i it e e e e e e e e e e e e e 55
4.5 Eckart-Young Theorem e e e e e e e e e 58
4.6 Fulland Reduced SVD’s o e e e e 59
4.7 Polar Decomposition e e e e 62
4.8 Application: Principal Components Analysis (PCA) 63
4.9 Relationshipof PCAto SVD o 64
4.10 PCA with Eigenvalues and Eigenvectors o v v i i e e e 65
411 Connections v v it e e e e e e e e e e e e e 66
412 EXEICISES . v v v v v e 69

5 Classical Control with Linear Algebra

5.1
52
53
54
5.5
5.6
5.7

6 Classical Prediction and Filtering With Linear Algebra

6.1
6.2
6.3
6.4
6.5

Overview
A Control Problem
Finite Horizon Theory
Infinite Horizon Limit

Implementation
Exercises

Overview
Finite Dimensional Prediction

Infinite Horizon Prediction and Filtering Problems
Exercises

II Linear Programming

7 Linear Programming

7.1
7.2
1.3
7.4
7.5
7.6
7.7
7.8

Overview
Example 1: Production Problem
Example 2: Investment Problem

Standard Form

Duality

Duality Theorems

8 Optimal Transport

81 Overview
8.2 The Optimal Transport Problem
8.3 The Linear Programming Approach
84 TheDual Problem
8.5 The Python Optimal Transport Package

9 Von Neumann Growth Model (and a Generalization)
9.1 Notation
9.2 Model Ingredients and Assumptions
9.3 Dynamic Interpretation
94 Duality
9.5 Interpretation as Two-player Zero-sum Game . . .

III Solution Methods

10 Using Newton’s Method to Solve Economic Models
10.1 Overview
10.2 Fixed Point Computation Using Newton’s Method
10.3 Root-Finding in One Dimension
10.4 Multivariate Newton’s Method
10.5 Exercises

11 Discrete State Dynamic Programming

11.1

Overview

Undiscounted Problems

Objective Function and Constraints

Computations

Combined Finite Dimensional Control and Prediction

71
71
72
73
77
79
81
89

91
91
92
103
104
108

111

113
113
113
114
116
118
120
123
124

131
131
132
133
140
144

149
154
154
156
157
158

165

167
167
168
174
176
184

191

11.2
11.3
11.4
11.5
11.6
11.7

Discrete DPs e e
Solving Discrete DPs o e e e e e e e e e e e
Example: A GrowthModel e
EXErCiSes o v i e e e e e e e e
SOIULONS . . . o . o e e e e e e e e e e e e e e

IV Time Series Models

12 VARs and DMDs

12.1
12.2
12.3
12.4
12.5
12.6

First-Order Vector AULOTEZIeSSIONS . « .+ v v v v v v v v e e e e e e e e e e e e e e e e
Dynamic Mode Decomposition (DMD) e
Representation 1 o e e e e e e e e e e e e
Representation 2 L L. e e e e e e e e e e e e e
Representation 3 L. e e e e e e e e e e e
Source for Some Python Code L e

13 Finite Markov Chains

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

OVEIVIEW o o i e e e e e e e e e e
Definitions o L. e e e e e e e
Simulationo e e e e e e
Marginal Distributions L. e e e e
Irreducibility and Aperiodicity L e e e e e e e e e
Stationary Distributions e e e e e e e e e e e e
Ergodicity e e e e e e
Computing EXpectations o i e e e e e e e e e e
EXErCises o o o e e

14 Continuous State Markov Chains

14.1
14.2
14.3
14.4
14.5
14.6

OVEIVIEW o o e e e e e e e
The Density Case o o i v i e e e e e
Beyond Densitieso e e e e e e e e e e e e e e
Stability e e e e e e
EXErCises o o e e e
AppendiXo e e e e

15 Covariance Stationary Processes

15.1
15.2
15.3
15.4

OVEIVIEW o o o e e e e e e e
Introduction L e e e e e e
Spectral AnalysiS e e e e e e e e e e e e
Implementation e e e e e e e e e e e e e e e e

16 Estimation of Spectra

16.1
16.2
16.3
16.4

OVEIVIEW . . . o o o e e e e e s e e e e e e e e e e e e
Periodograms e e e e e e e e
Smoothing e e e e e e
EXErCiSes o v i e e e e e

17 Additive and Multiplicative Functionals

17.1
17.2
17.3
17.4
17.5

OVEIVIEW . . . o o o e e e e e e e e e e e e e
A Particular Additive Functional e e
Dynamics e e e
Code . . . e e e e e
More About the Multiplicative Martingale e

213

215
215
218
219
219
221
225

227
227
227
230
232
234
237
241
242
243

251
251
252
258
259
262
271

273
273
274
278
286

295
295
295
298
304

311
311
312
313
325
328

V Risk, Model Uncertainty and Robustness

18 Risk and Model Uncertainty

18.1 Overview .
18.2 Basic objects

18.3 Five preference specifications L e e e e e e e e e
184 Expected utility L L e e e e e e e e e e
18.5 Constraint preferences L e e e e e e e e e e
18.6 Multiplier preferences L e e e
18.7 Risk-sensitive preferences i i e e e e e e e e e e e e e e e e e e
18.8 Ex post Bayesian preferences e e e e e e e
18.9 Comparing preferences o . o e e e e e e e e
18.10 Risk aversion and misspecification aversion oo oo
18.11 Indifference curves e e e e
18.12 State price deflators L L L e e e
18.13 Iso-utility and iso-entropy curves and expansion paths
18.14 Bounds on expected utility e e e e e e e e e e

19 Etymology of Entropy
19.1 Information Theory L . o o e e e e e e e
19.2 A Measure of Unpredictability
19.3 Mathematical Properties of Entropy L oo
19.4 Conditional Entropy e
19.5 Independence as Maximum Conditional Entropy,
19.6 Thermodynamics o i it e e e e e e e e e e e e e e e
19.7 Statistical Divergenceo e e e e
19.8 Continuous distributions e e e e e e e e e e e e e
19.9 Relative entropy and Gaussian distributions Lo o L
19.10 Von Neumann Entropy 0 0 e e e e e e e e e e e e
19.11 Backus-Chernov-Zin Entropy o 0 0 i e e e e e e e e e
19.12 Wiener-Kolmogorov Prediction Error Formulaas Entropy
19.13 Multivariate Processes L e
19.14 Frequency Domain Robust Control
19.15 Relative Entropy for a Continuous Random Variable

20 Robustness
20.1 Overview .
20.2 The Model
20.3 Constructing

More Robust Policies e e

20.4 Robustness as Outcome of a Two-Person Zero-Sum Game
20.5 The Stochastic Case 0 i e e e e e e e e e
20.6 Implementation L. e e e e e e

20.7 Application
20.8 Appendix .

21 Robust Markov Perfect Equilibrium

21.1 Overview .

21.2 Linear Markov Perfect Equilibria with Robust Agents

21.3 Application

VI Other

22 Troubleshooting

335

337
337
338
355
356
356
357
358
380
381
402
402
425
447
468
480

493
493
494
494
495
495
496
496
496
497
497
498
498
499
499
500

503
503
506
507
508
512
514
515
520

523
523
524
527

543

545

22.1 Fixing Your Local Environment e

22.2 Reporting an Issue
23 References
24 Execution Statistics
Bibliography

Index

547

549

551

555

Vi

Tools and Techniques for Computational Economics

This website presents a set of lectures on the tools and techniques required to study computational economics.
 Linear Algebra
Linear Algebra

OR Decomposition

Circulant Matrices

Singular Value Decomposition (SVD)

Classical Control with Linear Algebra

Classical Prediction and Filtering With Linear Algebra

 Linear Programming

— Linear Programming

— Optimal Transport

— Von Neumann Growth Model (and a Generalization)
¢ Solution Methods

— Using Newton's Method to Solve Economic Models

— Discrete State Dynamic Programming
* Time Series Models

VARs and DMDs

Finite Markov Chains

Continuous State Markov Chains

Covariance Stationary Processes

Estimation of Spectra

Additive and Multiplicative Functionals

 Risk, Model Uncertainty and Robustness

Risk and Model Uncertainty

Etymology of Entropy

Robustness

Robust Markov Perfect Equilibrium
e Other

— Troubleshooting

— References

— Execution Statistics

CONTENTS

Tools and Techniques for Computational Economics

2 CONTENTS

Part I

Linear Algebra

CHAPTER
ONE

LINEAR ALGEBRA

1.1 Overview

Linear algebra is one of the most useful branches of applied mathematics for economists to invest in.

For example, many applied problems in economics and finance require the solution of a linear system of equations, such
as

Yy = ax, + by
Yo = cxy + diy
or, more generally,
Y1 = 01171 + Q19T + 0+ ATy
: (1.1
Yn = Qp1Tq + Qpoly + o+ Qg
The objective here is to solve for the “unknowns” z{, ..., x;, given ay, ..., @, and Y, ..., y,,.
When considering such problems, it is essential that we first consider at least some of the following questions
¢ Does a solution actually exist?
* Are there in fact many solutions, and if so how should we interpret them?
* If no solution exists, is there a best “approximate” solution?
* If a solution exists, how should we compute it?
These are the kinds of topics addressed by linear algebra.
In this lecture we will cover the basics of linear and matrix algebra, treating both theory and computation.
We admit some overlap with this lecture, where operations on NumPy arrays were first explained.

Note that this lecture is more theoretical than most, and contains background material that will be used in applications as
we go along.

Let’s start with some imports:

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

from scipy.linalg import inv, solve, det, eig

https://python-programming.quantecon.org/numpy.html

Tools and Techniques for Computational Economics

1.2 Vectors

A vector of length n is just a sequence (or array, or tuple) of n numbers, which we write as x = (zq,...,2,,) or & =

[T1, ey 2]

We will write these sequences either horizontally or vertically as we please.

(Later, when we wish to perform certain matrix operations, it will become necessary to distinguish between the two)

The set of all n-vectors is denoted by R™.

For example, R? is the plane, and a vector in R? is just a point in the plane.

Traditionally, vectors are represented visually as arrows from the origin to the point.

The following figure represents three vectors in this manner

fig, ax = plt.subplots(figsize=(10, 8))

Set the axes through the origin

for spine in ['left', 'bottom']:
ax.spines|[spine] .set_position('zero')

for spine in ['right', 'top'l]:
ax.spines[spine].set_color('none')

ax.set (xlim=(-5, 5), ylim=(-5, 5))

ax.grid()
vecs = ((2, 4), (=3, 3), (-4, -3.5))
for v in vecs:
ax.annotate('', xy=v, xytext=(0, 0),

arrowprops=dict (facecolor="'blue',

shrink=0,
alpha=0.7,
width=0.5))
ax.text (1.1 * v[0], 1.1 * v[1l], str(v))
plt.show ()

Chapter 1. Linear Algebra

Tools and Techniques for Computational Economics

(2, 4)

(-3,3)

(-4, -3.5)

1.2.1 Vector Operations

The two most common operators for vectors are addition and scalar multiplication, which we now describe.

As a matter of definition, when we add two vectors, we add them element-by-element

Z Y1 Tyt
cy= "2 4 V2] = T2 T

Scalar multiplication is an operation that takes a number «y and a vector « and produces

Y
YL = ’Y:x2
YT

Scalar multiplication is illustrated in the next figure

fig, ax = plt.subplots(figsize=(10, 8))
Set the axes through the origin
for spine in ['left', 'bottom']:

(continues on next page)

1.2. Vectors 7

Tools and Techniques for Computational Economics

ax.spines[spine] .set_position('zero')
for spine in ['right', 'top']:
ax.spines[spine] .set_color('none')

ax.set (xlim=(-5, 5), ylim=(-5, 5))
X = (2, 2)
ax.annotate ('', xy=x, xytext=(0, 0),
arrowprops=dict (facecolor="blue',
shrink=0,
alpha=1,
width=0.5))
ax.text (x[0] + 0.4, x[1] - 0.2, 'x', fontsize='16")
scalars = (-2, 2)
X = np.array (x)

for s in scalars:
v = s * x
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict (facecolor="'red',
shrink=0,

(continued from previous page)

alpha=0.5,
width=0.5))
ax.text(v[0] + 0.4, v[1] - 0.2, f£'S$S{s} x$', fontsize='1l6")
plt.show ()
8 Chapter 1. Linear Algebra

Tools and Techniques for Computational Economics

In Python, a vector can be represented as a list or tuple, suchas x = (2, 4, 6), butis more commonly represented
as a NumPy array.

One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax

X = np.ones (3) # Vector of three ones
y = np.array((2, 4, 6)) # Converts tuple (2, 4, 6) into array
X +y
array([3., 5., 7.1)
4 % x

1.2. Vectors 9

https://python-programming.quantecon.org/numpy.html#numpy-arrays

Tools and Techniques for Computational Economics

1.2.2 Inner Product and Norm
The inner product of vectors x,y € R™ is defined as
x'y = Z LiYi
i—1

Two vectors are called orthogonal if their inner product is zero.

The norm of a vector x represents its “length” (i.e., its distance from the zero vector) and is defined as

" 1/2
Jol = Vs = (Z x)
i=1

The expression ||« — y| is thought of as the distance between x and y.

Continuing on from the previous example, the inner product and norm can be computed as follows

np.sum(x * vy) # Inner product of x and y
12.0
np.sqgrt (np.sum(x**2)) # Norm of x, take one

1.7320508075688772
np.linalg.norm(x) # Norm of x, take two

1.7320508075688772

1.2.3 Span

Given a set of vectors A := {aq, ..., a;} in R™, it’s natural to think about the new vectors we can create by performing
linear operations.

New vectors created in this manner are called linear combinations of A.

In particular, y € R™ is a linear combination of A := {a4, ..., a;} if
y = pia, + -+ Bja, for some scalars 3, ..., By

In this context, the values 3, ..., 3, are called the coefficients of the linear combination.
The set of linear combinations of A is called the span of A.
The next figure shows the span of A = {a;, a5} in R3.

The span is a two-dimensional plane passing through these two points and the origin.
ax = plt.figure(figsize=(10, 8)) .add_subplot (projection="3d")

x_min, x_max = -5, 5
y_min, y_max = -5, 5

(continues on next page)

10 Chapter 1. Linear Algebra

Tools and Techniques for Computational Economics

a, B =0.2, 0.1

ax.set (x1lim=(x_min,
xticks=(0,),

X_max) ,
yticks=(0,),

ylim=(x_min,
zticks=(0,))

(continued from previous page)

x_max), zlim=(x_min, x_max),

gs = 3

z = np.linspace(x_min, x_max, gs)

X = np.zeros (gs)

y = np.zeros (gs)

ax.plot(x, vy, z, 'k=', lw=2, alpha=0.5)
ax.plot(z, %, y, 'k-', 1lw=2, alpha=0.5
ax.plot(y, z, x, 'k=', lw=2, alpha=0.5)

Fixed linear function, to generate a plane

def f(x, y):
return a * x + B * y

Vector locations, by coordinate

x_coords = np.array ((3, 3))
y_coords = np.array((4, —-4))
z = f(x_coords, y_coords)

for i in (0, 1):

ax.text (x_coords[i], y_coords[i],

Lines to vectors

z[1],

f'Sa_{i+1}$', fontsize=14)

for i in (0, 1):
x = (0, x_coords[i])
y = (0, y_coords([i])
z = (0, f(x_coords[i], y_coords[i]))
ax.plot(x, vy, z, '"b-', lw=1.5, alpha=0.6)
Draw the plane
grid_size = 20
xr2 = np.linspace(x_min, x_max, grid_size)
yr2 = np.linspace(y_min, y_max, grid_size)
%2, y2 = np.meshgrid(xr2, yr2)
z2 = £(x2, y2)
ax.plot_surface(x2, y2, z2, rstride=1,

linewidth=0,
plt.show ()

antialiased=True,

cstride=1, cmap=cm.jet,
alpha=0.2)

1.2. Vectors

11

Tools and Techniques for Computational Economics

dy

Examples

If A contains only one vector a; € R, then its span is just the scalar multiples of a;, which is the unique line passing

through both a; and the origin.

If A= {e;,e,,e3} consists of the canonical basis vectors of R3, that is

ol f] o

then the span of A is all of R3, because, for any z = (z,, x4, 73) € R, we can write
T = Xi€] + Toey + X3€5

Now consider Ay = {ey, 4,61 + €5}.

12

Chapter 1. Linear Algebra

Tools and Techniques for Computational Economics

If y = (Y4, Ys,ys) is any linear combination of these vectors, then y; = 0 (check it).

Hence A, fails to span all of R.

1.2.4 Linear Independence
As we'll see, it’s often desirable to find families of vectors with relatively large span, so that many vectors can be described
by linear operators on a few vectors.
The condition we need for a set of vectors to have a large span is what’s called linear independence.
In particular, a collection of vectors A := {a, ..., a; } in R™ is said to be
* linearly dependent if some strict subset of A has the same span as A.
* linearly independent if it is not linearly dependent.

Put differently, a set of vectors is linearly independent if no vector is redundant to the span and linearly dependent
otherwise.

To illustrate the idea, recall the figure that showed the span of vectors {a,, a,} in R? as a plane through the origin.
If we take a third vector a4 and form the set {a,, a5, as}, this set will be

* linearly dependent if a4 lies in the plane

¢ linearly independent otherwise

As another illustration of the concept, since R™ can be spanned by n vectors (see the discussion of canonical basis vectors
above), any collection of m > n vectors in R™ must be linearly dependent.

The following statements are equivalent to linear independence of A := {a,...,a;} C R"
1. No vector in A can be formed as a linear combination of the other elements.
2. If Byaq + - Bay, = 0 for scalars 5y, ..., By, then ; = --- = 3, = 0.

(The zero in the first expression is the origin of R™)

1.2.5 Unique Representations

Another nice thing about sets of linearly independent vectors is that each element in the span has a unique representation
as a linear combination of these vectors.

In other words, if A := {aq,...,a;} C R™ is linearly independent and
y = fray + - Bray

then no other coefficient sequence 7y, ..., 7y, will produce the same vector y.

Indeed, if we also have y = ~y;a; + -+~ vy, then
(By —mdag + -+ (B — w)a =0

Linear independence now implies v, = 3, for all 4.

1.2. Vectors 13

Tools and Techniques for Computational Economics

1.3 Matrices

Matrices are a neat way of organizing data for use in linear operations.

An n X k matrix is a rectangular array A of numbers with n rows and &k columns:

ap; Qia a1k
A= |G21 @22 Aok
Apy Qpoy o Qg

Often, the numbers in the matrix represent coefficients in a system of linear equations, as discussed at the start of this
lecture.

For obvious reasons, the matrix A is also called a vector if either n = 1 or k = 1.

In the former case, A is called a row vector, while in the latter it is called a column vector.

If n = k, then A is called square.

The matrix formed by replacing a,; by a; for every i and j is called the ranspose of A and denoted A’ or AT,
If A= A’, then A is called symmetric.

For a square matrix A, the 7 elements of the form a,; for i = 1, ..., n are called the principal diagonal.

A is called diagonal if the only nonzero entries are on the principal diagonal.

If, in addition to being diagonal, each element along the principal diagonal is equal to 1, then A is called the identity matrix
and denoted by I.

1.3.1 Matrix Operations

Just as was the case for vectors, a number of algebraic operations are defined for matrices.

Scalar multiplication and addition are immediate generalizations of the vector case:

aip o Qg Y@y ot YAy
YA=~] : : : = : : :
Ap1 o Ay V@py o YA

ayp A biy o by ay +01; o ay by
S S O D R : : :
An1 0 Qpg bnl bnk Gy + bnl Qg+ bnk

In the latter case, the matrices must have the same shape in order for the definition to make sense.

and

A+B=

We also have a convention for multiplying two matrices.

The rule for matrix multiplication generalizes the idea of inner products discussed above and is designed to make multi-
plication play well with basic linear operations.

If A and B are two matrices, then their product A B is formed by taking as its 4, j-th element the inner product of the i-th
row of A and the j-th column of B.

There are many tutorials to help you visualize this operation, such as this one, or the discussion on the Wikipedia page.
If Aisn x kand B is j x m, then to multiply A and B we require k¥ = j, and the resulting matrix AB is n. X m.

As perhaps the most important special case, consider multiplying n x k matrix A and k£ x 1 column vector .

14 Chapter 1. Linear Algebra

https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://en.wikipedia.org/wiki/Matrix_multiplication

Tools and Techniques for Computational Economics

According to the preceding rule, this gives us an n x 1 column vector

app v Gy | [T (11T + o+ Ty
Az =| 1 &+ = : (12)
Apy 0 Ay Ty, 127 +"'+ankxk

Note: AB and BA are not generally the same thing.

Another important special case is the identity matrix.
You should check that if A isn x kand I is the k x k identity matrix, then Al = A.

If [is the n x n identity matrix, then /A = A.

1.3.2 Matrices in NumPy

NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the standard matrix oper-
ations'.

You can create them manually from tuples of tuples (or lists of lists) as follows

A= ((L, 2),
(3, 4))

type (A)
tuple

A = np.array (A)

type (A)
numpy .ndarray
A.shape

(2, 2)

The shape attribute is a tuple giving the number of rows and columns — see here for more discussion.

To get the transpose of A, use A.transpose () or, more simply, A. T.

There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) — see here.

Since operations are performed elementwise by default, scalar multiplication and addition have very natural syntax
A = np.identity(3)

B = np.ones ((3, 3))
2 * A

I' Although there is a specialized matrix data type defined in NumPy, it’s more standard to work with ordinary NumPy arrays. See this discussion.

1.3. Matrices 15

https://python-programming.quantecon.org/numpy.html#shape-and-dimension
https://python-programming.quantecon.org/numpy.html#creating-arrays
https://python-programming.quantecon.org/numpy.html#matrix-multiplication

Tools and Techniques for Computational Economics

array([[2., 0., 0.1,
[O-l 2-1 ']I
[0., 0., 2.11)

o

A+ B

array ([[2., 1., 1.1,
[dop 2oy dalg
(r., 1., 2.11)
To multiply matrices we use the @ symbol.
In particular, A @ B is matrix multiplication, whereas A * B is element-by-element multiplication.

See here for more discussion.

1.3.3 Matrices as Maps

Each n x k matrix A can be identified with a function f(x) = Az that maps z € R into y = Az € R™.
These kinds of functions have a special property: they are linear.

A function f: RF — R is called linear if, for all 2,y € R* and all scalars «, 3, we have

flax + By) = af(x) + Bf(y)

You can check that this holds for the function f(x) = Ax + b when b is the zero vector and fails when b is nonzero.

In fact, it's known that f is linear if and only if there exists a matrix A such that f(x) = Az for all z.

1.4 Solving Systems of Equations

Recall again the system of equations (1.1).

If we compare (1.1) and (1.2), we see that (1.1) can now be written more conveniently as
y = Az (13)

The problem we face is to determine a vector x € R¥ that solves (1.3), taking i and A as given.
This is a special case of a more general problem: Find an x such that y = f(z).

Given an arbitrary function f and a y, is there always an « such that y = f(x)?

If so, is it always unique?

The answer to both these questions is negative, as the next figure shows

def f(x):
return 0.6 * np.cos(4 * x) + 1.4

xmin, xmax = -1, 1
X = np.linspace (xmin, xmax, 160)

(continues on next page)

16 Chapter 1. Linear Algebra

https://python-programming.quantecon.org/numpy.html#matrix-multiplication
https://en.wikipedia.org/wiki/Linear_map#Matrices

Tools and Techniques for Computational Economics

y = £(x)
va, yb = np.min(y), np.max(y)

fig, axes = plt.subplots (2, 1, figsize=(10, 10))

for ax in axes:

Set the axes through the origin
for spine in ['left', 'bottom']:
ax.spines|[spine] .set_position('zero")

[
for spine in ['right', 'top'l]
[

ax.spines|[spine] .set_color ('none')

ax.set (ylim=(-0.6, 3.2), xlim=(xmin, xmax),

yticks=(), xticks=())

ax.plot (x, y, 'k-', lw=2, label='SfS$')
ax.fill_between (x, ya, yb, facecolor='blue', alpha=0.05)

ax.vlines ([0], vya, yb, 1lw=3,

color='blue', label='range of f')

ax.text(0.04, -0.3, '0', fontsize=16)

ax = axes|[0]

ax.legend(loc="upper right', frameon=False)

ybar = 1.5

ax.plot(x, x * 0 + ybar, 'k——', alpha=0.5)

ax.text (0.05, 0.8 * ybar, 'SyS$',

fontsize=16)

for i, z in enumerate((-0.35, 0.35)):
ax.vlines(z, 0, f(z), linestyle='—--"', alpha=0.5)

ax.text(z, -0.2, f£'Sx_<{i}$"',

ax = axes/[1]

ybar = 6

fontsize=16)

2.
ax.plot(x, x * 0 + ybar, 'k——', alpha=0.5)
(0

ax.text (0.04, 0.91 * ybar, 'SyS$',

plt.show ()

fontsize=16)

(continued from previous page)

1.4. Solving Systems of Equations

17

Tools and Techniques for Computational Economics

—_—

= range of f

X0 0 X1

In the first plot, there are multiple solutions, as the function is not one-to-one, while in the second there are no solutions,
since y lies outside the range of f.

Can we impose conditions on A in (1.3) that rule out these problems?

In this context, the most important thing to recognize about the expression Az is that it corresponds to a linear combination
of the columns of A.

In particular, if a4, ..., a;, are the columns of A, then
Az = zqaq + - + 104

Hence the range of f(x) = Ax is exactly the span of the columns of A.
We want the range to be large so that it contains arbitrary y.
As you might recall, the condition that we want for the span to be large is linear independence.

A happy fact is that linear independence of the columns of A also gives us uniqueness.

18 Chapter 1. Linear Algebra

Tools and Techniques for Computational Economics

Indeed, it follows from our earlier discussion thatif {a,, ..., a; } are linearly independentand y = Ax = x;a, 442 a4,
then no z # x satisfies y = Az.

1.4.1 The Square Matrix Case

Let’s discuss some more details, starting with the case where A is n x n.
This is the familiar case where the number of unknowns equals the number of equations.
For arbitrary y € R™, we hope to find a unique x € R™ such that y = Ax.

In view of the observations immediately above, if the columns of A are linearly independent, then their span, and hence
the range of f(z) = A, is all of R™.

Hence there always exists an x such that y = Ax.
Moreover, the solution is unique.
In particular, the following are equivalent
1. The columns of A are linearly independent.
2. For any y € R™, the equation y = Ax has a unique solution.

The property of having linearly independent columns is sometimes expressed as having full column rank.

Inverse Matrices

Can we give some sort of expression for the solution?
If y and A are scalar with A # 0, then the solution is 7 = A~ 1y.
A similar expression is available in the matrix case.

In particular, if square matrix A has full column rank, then it possesses a multiplicative inverse matrix A~*, with the
property that AA™ = A 1A =1.

As a consequence, if we pre-multiply both sides of y = Ax by A1, we get x = A1y,

This is the solution that we’re looking for.

Determinants

Another quick comment about square matrices is that to every such matrix we assign a unique number called the deter-
minant of the matrix — you can find the expression for it here.

If the determinant of A is not zero, then we say that A is nonsingular.

Perhaps the most important fact about determinants is that A is nonsingular if and only if A is of full column rank.

This gives us a useful one-number summary of whether or not a square matrix can be inverted.

1.4. Solving Systems of Equations 19

https://en.wikipedia.org/wiki/Determinant

Tools and Techniques for Computational Economics

1.4.2 More Rows than Columns

This is the n x k case with n > k.

This case is very important in many settings, not least in the setting of linear regression (where n is the number of
observations, and & is the number of explanatory variables).

Given arbitrary y € R”, we seek an 2 € R¥ such that y = Az.
In this setting, the existence of a solution is highly unlikely.

Without much loss of generality, let’s go over the intuition focusing on the case where the columns of A are linearly
independent.

It follows that the span of the columns of A is a k-dimensional subspace of R".

This span is very “unlikely” to contain arbitrary y € R".

To see why, recall the figure above, where k = 2 and n = 3.

Imagine an arbitrarily chosen y € R?, located somewhere in that three-dimensional space.

What's the likelihood that y lies in the span of {a,, as} (i.e., the two dimensional plane through these points)?
In a sense, it must be very small, since this plane has zero “thickness”.

As aresult, in the n > k case we usually give up on existence.

However, we can still seek the best approximation, for example, an = that makes the distance |y — Az| as small as
possible.

To solve this problem, one can use either calculus or the theory of orthogonal projections.

The solution is known to be = (A’ A)~1 A’y — see for example chapter 3 of these notes.

1.4.3 More Columns than Rows

This is the n X k case with n < k, so there are fewer equations than unknowns.

In this case there are either no solutions or infinitely many — in other words, uniqueness never holds.
For example, consider the case where k = 3 and n = 2.

Thus, the columns of A consists of 3 vectors in R2.

This set can never be linearly independent, since it is possible to find two vectors that span R?.

(For example, use the canonical basis vectors)

It follows that one column is a linear combination of the other two.

For example, let’s say that a; = aa, + Sas.

Then if y = Az = x,a; + z9a9 + T5a4, We can also write
y =z (aay + Bag) + 250y + x303 = (2100 + 3)ay + (2,8 + x3)ay

In other words, uniqueness fails.

20 Chapter 1. Linear Algebra

https://python.quantecon.org/_static/lecture_specific/linear_algebra/course_notes.pdf

Tools and Techniques for Computational Economics

1.4.4 Linear Equations with SciPy

Here’s an illustration of how to solve linear equations with SciPy’s 1 inalg submodule.

All of these routines are Python front ends to time-tested and highly optimized FORTRAN code

A (1, 2), (3, 4))

A = np.array (A)

y = np.ones((2, 1)) # Column vector

det (A) # Check that A is nonsingular, and hence invertible

-2.0
A_inv = inv (A) # Compute the inverse
A_inv
array([[-2. , 1.1,
[1.5, -0.511)

X = A_inv @ y # Solution
A Q@ x # Should equal y

solve (A, V) # Produces the same solution

array ([[-1.1,
[1.11)
Observe how we can solve for . = A~ 1y by either via inv (A) @ y,orusing solve (A, vy).

The latter method uses a different algorithm (LU decomposition) that is numerically more stable, and hence should almost
always be preferred.

To obtain the least-squares solution 7 = (A’A) 1A'y, use scipy.linalg.lstsq (A, y).

1.5 Eigenvalues and Eigenvectors

Let A be an n X n square matrix.

If A is scalar and v is a non-zero vector in R™ such that
Av=)v

then we say that A is an eigenvalue of A, and v is an eigenvector.
Thus, an eigenvector of A is a vector such that when the map f(z) = Ax is applied, v is merely scaled.
The next figure shows two eigenvectors (blue arrows) and their images under A (red arrows).

As expected, the image Av of each v is just a scaled version of the original

1.5. Eigenvalues and Eigenvectors 21

Tools and Techniques for Computational Economics

A (1, 2),
(2, 1))
A = np.array (A)
evals, evecs = eig(A)
evecs = evecs|[:, 0], evecs[:, 1]

fig, ax = plt.subplots(figsize=(10, 8))

Set the axes through the origin

for spine in ['left', 'bottom']:
ax.spines[spine] .set_position('zero')

for spine in ['right', 'top']:
ax.spines|[spine].set_color('none')

ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3

ax.set (xlim=(xmin, xmax), ylim=(ymin, ymax))

Plot each eigenvector
for v in evecs:
ax.annotate('', xy=v, xytext=(0, 0),

arrowprops=dict (facecolor="'blue',

shrink=0,
alpha=0.6,
width=0.5))

Plot the image of each eigenvector
for v in evecs:

v =A0vV

ax.annotate ('', xy=v, xytext=(0, 0),

arrowprops=dict (facecolor="'red',

shrink=0,
alpha=0.6,
width=0.5))

Plot the lines they run through
x = np.linspace (xmin, xmax, 3)
for v in evecs:

a = v[1l] / v[0]

ax.plot(x, a * x, 'b-', 1lw=0.4)

plt.show ()

22

Chapter 1. Linear Algebra

Tools and Techniques for Computational Economics

3 .
" -
™. //

-
. A
.. 2
“\
.
-,
.
-,
. 1-
.
r T T {J:; T T 1
-3 —2 -1 - 1 2 3
/
-
- .
- .
=1 4 o
~ 1
-,
- ..
o \\\
y -,
i 24 |
// -
/ ™
- -
- ™
_3 p

The eigenvalue equation is equivalent to (A — AI)v = 0, and this has a nonzero solution v only when the columns of
A — M are linearly dependent.

This in turn is equivalent to stating that the determinant is zero.
Hence to find all eigenvalues, we can look for A such that the determinant of A — A[is zero.
This problem can be expressed as one of solving for the roots of a polynomial in A of degree n.
This in turn implies the existence of n solutions in the complex plane, although some might be repeated.
Some nice facts about the eigenvalues of a square matrix A are as follows
1. The determinant of A equals the product of the eigenvalues.
2. The trace of A (the sum of the elements on the principal diagonal) equals the sum of the eigenvalues.
3. If A is symmetric, then all of its eigenvalues are real.
4. If Ais invertible and)\, ..., A, are its eigenvalues, then the eigenvalues of A~! are 1/)\,, ..., 1/\,,.
A corollary of the first statement is that a matrix is invertible if and only if all its eigenvalues are nonzero.

Using SciPy, we can solve for the eigenvalues and eigenvectors of a matrix as follows

A= ((L, 2),
(2, 1))

(continues on next page)

1.5. Eigenvalues and Eigenvectors 23

Tools and Techniques for Computational Economics

(continued from previous page)

A = np.array (A)
evals, evecs = eig(A)
evals

array ([3.40.3, -1.+40.31])
evecs

array([[0.70710678, -0.70710678],
[0.70710678, 0.70710678]17)

Note that the columns of evecs are the eigenvectors.

Since any scalar multiple of an eigenvector is an eigenvector with the same eigenvalue (check it), the eig routine normalizes
the length of each eigenvector to one.

1.5.1 Generalized Eigenvalues

It is sometimes useful to consider the generalized eigenvalue problem, which, for given matrices A and B, seeks generalized
eigenvalues A and eigenvectors v such that

Av = A\Bv

This can be solved in SciPy via scipy.linalg.eig (A, B).

Of course, if B is square and invertible, then we can treat the generalized eigenvalue problem as an ordinary eigenvalue
problem B! Av =)v, but this is not always the case.

1.6 Further Topics

We round out our discussion by briefly mentioning several other important topics.

1.6.1 Series Expansions

Recall the usual summation formula for a geometric progression, which states that if |a| < 1, then Z;OZO a¥ = (1—a)™L.

A generalization of this idea exists in the matrix setting.

Matrix Norms

Let A be a square matrix, and let

| Al := max [Az]

lzl=1

The norms on the right-hand side are ordinary vector norms, while the norm on the left-hand side is a matrix norm — in
this case, the so-called spectral norm.

24 Chapter 1. Linear Algebra

Tools and Techniques for Computational Economics

For example, for a square matrix .S, the condition ||S| < 1 means that S is contractive, in the sense that it pulls all vectors
towards the origin’.

Neumann’s Theorem

Let A be a square matrix and let A* := AA*1 with A := A,
In other words, A* is the k-th power of A.

Neumann’s theorem states the following: If | A¥| < 1 for some k € N, then I — A is invertible, and

(I—A)"t = ZAk (1.4)
k=0

Spectral Radius

A result known as Gelfand’s formula tells us that, for any square matrix A,
p(A) = lim |A*[|!/E
k—o0

Here p(A) is the spectral radius, defined as max; |\, |, where {),}, is the set of eigenvalues of A.

As a consequence of Gelfand’s formula, if all eigenvalues are strictly less than one in modulus, there exists a & with
|AF| < 1.

In which case (1.4) is valid.

1.6.2 Positive Definite Matrices

Let A be a symmetric n X n matrix.
We say that A is

1. positive definite if =’ Ax > 0 for every x € R™ {0}

2. positive semi-definite or nonnegative definite if =’ Az > 0 for every z € R™
Analogous definitions exist for negative definite and negative semi-definite matrices.

It is notable that if A is positive definite, then all of its eigenvalues are strictly positive, and hence A is invertible (with
positive definite inverse).

1.6.3 Differentiating Linear and Quadratic Forms

The following formulas are useful in many economic contexts. Let
e z,xand a all be n x 1 vectors
e Abeann x n matrix
¢ Bbe an m x n matrix and y be an m x 1 vector

Then

1 da’x

o @

2 Suppose that |S|| < 1. Take any nonzero vector z, and let 7 := |z|. We have |Sz| = r||S(z/r)| < 7|S| < r = ||z|. Hence every point is
pulled towards the origin.

1.6. Further Topics 25

Tools and Techniques for Computational Economics

2. Yo —

3. %84T — (A4 Az

/
4. oylz _ B,

Oy’ Bz __ ’
5. o = Y?

Exercise 1.7.1 below asks you to apply these formulas.

1.6.4 Further Reading

The documentation of the scipy.linalg submodule can be found here.

Chapters 2 and 3 of the Econometric Theory contains a discussion of linear algebra along the same lines as above, with
solved exercises.

If you don’t mind a slightly abstract approach, a nice intermediate-level text on linear algebra is [Jdnich, 1994].

1.7 EXxercises

Exercise 1.7.1

Let = be a given n x 1 vector and consider the problem
v(x) = max {—y' Py — v’ Qu}
yyu
subject to the linear constraint
y = Az + Bu

Here
e Pisann x n matrix and @) is an m X m matrix
e Aisann X n matrix and B is an n X m matrix
* both P and) are symmetric and positive semidefinite
(What must the dimensions of y and u be to make this a well-posed problem?)

One way to solve the problem is to form the Lagrangian
L =—y Py—u'Qu+ N [Az + Bu — y]

where A is an n x 1 vector of Lagrange multipliers.

Try applying the formulas given above for differentiating quadratic and linear forms to obtain the first-order conditions
for maximizing £ with respect to y, v and minimizing it with respect to \.

Show that these conditions imply that
. A= —-2Py.
2. The optimizing choice of u satisfies u = —(Q + B’ PB) !B’ PAx.
3. The function v satisfies v(x) = —a’ Pz where P = A’PA — A’PB(Q + B’PB) !B’ PA.

26 Chapter 1. Linear Algebra

https://docs.scipy.org/doc/scipy/reference/linalg.html
https://johnstachurski.net/emet.html

Tools and Techniques for Computational Economics

As we will see, in economic contexts Lagrange multipliers often are shadow prices.

Note: If we don’t care about the Lagrange multipliers, we can substitute the constraint into the objective function, and
then just maximize —(Ax + Bu)'P(Axz + Bu) — v/ Qu with respect to u. You can verify that this leads to the same
maximizer.

Solution to Exercise 1.7.1
We have an optimization problem:
v(z) = max{—y Py — u'Qu}
y,u
S.t.
y = Az + Bu

with primitives
¢ P be a symmetric and positive semidefinite n X n matrix
¢ () be a symmetric and positive semidefinite m x m matrix
e Aann X n matrix
e Bann X m matrix

The associated Lagrangian is:
L=—y'Py—uQu+ N[Az + Bu — y]

Step 1.

Differentiating Lagrangian equation w.r.t y and setting its derivative equal to zero yields

oL
e (P4 P)y—\=-2Py—\=
ay (P+ Py Yy 0,

since P is symmetric.

Accordingly, the first-order condition for maximizing L w.r.t. y implies
A= —2Py

Step 2.

Differentiating Lagrangian equation w.r.t. u and setting its derivative equal to zero yields

g—i =—(Q+Q)u—B'X=—-2Qu+B'X=0

Substituting A = —2 Py gives
Qu+ B'Py=0
Substituting the linear constraint y = Ax + Bu into above equation gives

Qu+ B'P(Az+ Bu) =0

1.7. Exercises 27

Tools and Techniques for Computational Economics

(Q+ B'PB)u+ B'PAx =0
which is the first-order condition for maximizing L w.r.t. u.

Thus, the optimal choice of u must satisfy
u=—(Q+ B PB)"'B'PAx,

which follows from the definition of the first-order conditions for Lagrangian equation.
Step 3.

Rewriting our problem by substituting the constraint into the objective function, we get
v(x) = max{—(Az + Bu)'P(Ax + Bu) — v Qu}
Since we know the optimal choice of u satisfies u = —(Q + B’ PB) ' B’ P Az, then
v(z) = —(Ax + Bu) P(Az + Bu) —v'Qu with uw=—(Q + B'PB)"'B'PAx

To evaluate the function
v(z) = —(Az + Bu)' P(Az + Bu) — u'Qu
=—(2’A" +u'B’")P(Axz 4+ Bu) — v Qu
=—x'A'PArx —u' B'PAx — 2’ A’PBu — v'B’PBu — v/Qu
=—a'A'PAx — 2u'B’PAx — v/ (Q + B’PB)u
For simplicity, denote by S := (Q + B’PB) !B’ PA, then u = —Sx.
Regarding the second term —2u’ B’ P Ax,
—2u'B’PAx = —22'S'B'PAx
— 2/ A'PB(Q + B'PB)"'B'PAx
Notice that the term (Q + B’ PB)~! is symmetric as both P and Q are symmetric.
Regarding the third term —u’(Q + B’ PB)u,
—u'(Q+ B'’PB)u=—2'S"(Q + B'PB)Sx
=—12'A'PB(Q+ B'PB)"'B'PAx
Hence, the summation of second and third terms is 2’ A’ PB(Q + B’PB) "' B’ PAx.
This implies that
v(z) = —2’A’PAx — 2u'B'PAx — v/ (Q + B'PB)u
= —a2'A'PAx + 2’ A'PB(Q + B'PB) B’ PAx
= —12/[A’PA— A'PB(Q + B'PB)"'B'PAlx

Therefore, the solution to the optimization problem v(z) = —z’ Pz follows the above result by denoting P:=A'PA—
A'PB(Q + B'PB)"'B'PA

28 Chapter 1. Linear Algebra

CHAPTER
TWO

QR DECOMPOSITION

2.1 Overview

This lecture describes the QR decomposition and how it relates to
 Orthogonal projection and least squares
¢ A Gram-Schmidt process
* Eigenvalues and eigenvectors

We'll write some Python code to help consolidate our understandings.

2.2 Matrix Factorization

The QR decomposition (also called the QR factorization) of a matrix is a decomposition of a matrix into the product of
an orthogonal matrix and a triangular matrix.

A QR decomposition of a real matrix A takes the form
A=QR

where
* (Q is an orthogonal matrix (so that Q7'Q = I)
e R is an upper triangular matrix
We'll use a Gram-Schmidt process to compute a QR decomposition

Because doing so is so educational, we’ll write our own Python code to do the job

2.3 Gram-Schmidt process

We'll start with a square matrix A.
If a square matrix A is nonsingular, then a Q) R factorization is unique.
We'll deal with a rectangular matrix A later.

Actually, our algorithm will work with a rectangular A that is not square.

29

Tools and Techniques for Computational Economics

2.3.1 Gram-Schmidt process for square A

Here we apply a Gram-Schmidt process to the columns of matrix A.

In particular, let
A:[‘h‘az"“‘an]

Let || - || denote the L2 norm.

The Gram-Schmidt algorithm repeatedly combines the following two steps in a particular order
¢ normalize a vector to have unit norm
« orthogonalize the next vector

To begin, we set u; = a, and then normalize:

Uq
T T]
1

We orgonalize first to compute u, and then normalize to create e,:

u
Uy = ay — (ag - €1)eq, €y = 7Hu2||
2

We invite the reader to verify that e, is orthogonal to e, by checking that e; - e, = 0.
The Gram-Schmidt procedure continues iterating.
Thus, for k = 2, ..., n — 1 we construct

Uk11
Ugy1 = Qpy1 — (ak+1 cep)ep — o — (ak+1 “er)er, Crt1 = 7”“]: I
+1

Here (a; - ¢;) can be interpreted as the linear least squares regression coefficient of a; on e,

* itis the inner product of a; and e; divided by the inner product of e; where ¢, - e; = 1, as normalization has assured
us.

« this regression coefficient has an interpretation as being a covariance divided by a variance

It can be verified that

A€ Qg€ v Ap €
0 Qg €y *+ Q€
A:[al‘GZ‘...‘an]:[el‘e2‘...‘en] : 2:2) n:2
O O aee an . en
Thus, we have constructed the decomposision
A=QR
where
Q:[al‘CL?‘ ‘an]:[el‘%‘ ‘en}
and
CLl 61 a/2 '61 a 61
n— 0 Qg - €4 a,, - €y
0 0 a :e

30 Chapter 2. QR Decomposition

Tools and Techniques for Computational Economics

2.3.2 A not square

Now suppose that A is an n x m matrix where m > n.

Then a QR decomposition is

Ay € Qp-€ = Ap € Apyy € 0 Gyt €

O a .e e a .e a .e e a .e

A:[al‘G/Q""‘am]:[el‘62""‘611] : 2:2) n:2 ntl €2 m§2
0 0 A €y Qpyy €yt Gy €y

which implies that
ay = (ay - eq)e;

ag = (ay - eq)e; + (ag - e3)eq

an = (an : 61)61 + (an . 62)62 + ot (an ' en)en

Apiy = (Apyg - €p)eq + (g - €)eg + o+ (a4 - €,)e,

Ay = (am ' 61)61 + (am : 62)62 + et (am ! 6n)en

2.4 Some Code

Now let’s write some homemade Python code to implement a QR decomposition by deploying the Gram-Schmidt process
described above.

import numpy as np
from scipy.linalg import gr
def QR_Decomposition (A) :

n, m = A.shape # get the shape of A

Q = np.empty((n, n)) # initialize matrix Q
u np.empty((n, n)) # initialize matrix u

ul:, 0] = A[:, 0]
Q[:, 0] = ul:, 0] / np.linalg.norm(ufl:, 0])

for i in range(l, n):

ul:, 1] = A[:, 1]
for j in range(i):

ul:, 1] -= (A[:, 1] @ Q[:, Jl1) * Ql:, Jl # get each u vector
Q[:, 1] = ul:, 1] / np.linalg.norm(ufl[:, i]) # compute each e vetor

R np.zeros((n, m))
for i in range(n):
for j in range(i, m):
R[i, 7] Al:, 3] @ Q[:, 1]

return Q, R

2.4. Some Code 31

Tools and Techniques for Computational Economics

The preceding code is fine but can benefit from some further housekeeping.

We want to do this because later in this notebook we want to compare results from using our homemade code above with

the code for a QR that the Python scipy package delivers.

There can be be sign differences between the () and R matrices produced by different numerical algorithms.

All of these are valid QR decompositions because of how the sign differences cancel out when we compute Q) R.

However, to make the results from our homemade function and the QR module in scipy comparable, let’s require that

@ have positive diagonal entries.

We do this by adjusting the signs of the columns in () and the rows in R appropriately.

To accomplish this we’ll define a pair of functions.

def diag_sign(A):

"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(A)))
return D

def adjust_sign(Q, R):

mmn

Adjust the signs of the columns in Q and rows in R to

impose positive diagonal of Q

D = diag_sign (Q)

Ql:, :1 =Q @D
: D @ R

return Q, R

2.5 Example

Now let’s do an example.

A = np.array([([2.0, 1.0, 0.01, (2.0, 0.0, 2.01, 0.0, 1.0, 1.011)

A = np.array([([1.0, 0.5, 0.2], [0.5, 0.5, 1.0], [0.0, 1.0, 1.0]])
A = np.array([[1.0, 0.5, 0.2], [0.5, 0.5, 1.0]])

A

(0., 1., 1.11)

Q, R = adjust_sign (*QR_Decomposition (A))

32

Chapter 2. QR Decomposition

Tools and Techniques for Computational Economics

array ([[0.70710678, -0.40824829,
[0.70710678, 0.40824829,
[0. , -0.81649658,
R
array ([[1.41421356, 0.70710678,
[0. , —1.22474487,
[0. , 0. o

.57735027],
.57735027]

.5773502711)

.707106787,
.40824829]

.1547005411)

Let’s compare outcomes with what the scipy package produces

Q_scipy, R_scipy =

print ('Our Q: \n',
print ("\n"')

Q)

adjust_sign (*gr (A))

print ('Scipy Q: \n', Q_scipy)
Our Q:
[[0.70710678 -0.40824829 -0.57735027]
[0.70710678 0.40824829 0.57735027]
[0. -0.81649658 0.5773502711]
Scipy Q:
[[0.70710678 -0.40824829 -0.57735027]
[0.70710678 0.40824829 0.57735027]
[0. -0.81649658 0.5773502711]
print ('Our R: \n', R)
print ('\n")
print ('Scipy R: \n', R_scipy)
Our R:
[[1.41421356 0.70710678 0.70710678]
[0. -1.22474487 -0.40824829]
[0. 0. 1.15470054]]
Scipy R:
[[1.41421356 0.70710678 0.70710678]
[0. -1.22474487 -0.40824829]
[0. 0. 1.15470054]]

The above outcomes give us the good news that our homemade function agrees with what scipy produces.

Now let’s do a QR decomposition for a rectangular matrix A that is n X m with m > n.

A = np.array([[1, 3, 4], [2, 0, 9]1)
Q, R = adjust_sign (*QR_Decomposition (A))
Q, R

2.5. Example

33

Tools and Techniques for Computational Economics

(array ([[0.4472136 , -0.89442719],
[0.89442719, 0.4472136 11]),
array ([[2.23606798, 1.34164079, 9.8386991 1,
[O , —2.68328157, 0.4472136 11))

Q_scipy, R_scipy = adjust_sign(*qr (7))
Q_scipy, R_scipy

[0.4472136 , -0.89442719],

[0.89442719, 0.4472136 11),

array ([[2.23606798, 1.34164079, 9.8386991 1,
[0 , —-2.68328157, 0.4472136 11))

2.6 Using QR Decomposition to Compute Eigenvalues

Now for a useful fact about the QR algorithm.
The following iterations on the QR decomposition can be used to compute eigenvalues of a square matrix A.
Here is the algorithm:

1. Set Ay = Aand form Ay = Qo R,

2. Form A; = R,Q, . Note that A is similar to A (easy to verify) and so has the same eigenvalues.

3. Form A, = QR (i.e., form the QR decomposition of A,).
4. Form A, = R,(); and then Ay = Q,R, .
5

. Iterate to convergence.

6. Compute eigenvalues of A and compare them to the diagonal values of the limiting A,, found from this process.

Remark: this algorithm is close to one of the most efficient ways of computing eigenvalues!

Let’s write some Python code to try out the algorithm

def QR_eigvals (A, tol=le-12, maxiter=1000) :
"Find the eigenvalues of A using QR decomposition."

A_old = np.copy (A)
A_new = np.copy (A)

diff = np.inf

i=20
while (diff > tol) and (i < maxiter):
A_old[:, :] = A_new

Q, R = QR_Decomposition (A_old)
A_newl[:, :] = R @ Q

diff = np.abs(A_new - A_old) .max()
i +=1

eigvals = np.diag(A_new)

return eigvals

34 Chapter 2. QR Decomposition

Tools and Techniques for Computational Economics

Now let’s try the code and compare the results with what scipy.linalg.eigvals gives us

Here goes

experiment this with one random A matrix
A = np.random.random((3, 3))

sorted (QR_eigvals (A))

[-0.4297694064697409, -0.26958335762838337, 1.5689115427669107]

Compare with the scipy package.

sorted(np.linalg.eigvals (A))

[-0.4297694064697404, -0.2695833576283847, 1.568911542766912]

2.7 QR and PCA

There are interesting connections between the () R decomposition and principal components analysis (PCA).
Here are some.

1. Let X’ be a k x n random matrix where the jth column is a random draw from N (u, 3) where p is k x 1 vector
of means and Y is a k x k covariance matrix. We want n >> k — this is an “econometrics example”.

2. Form X’ = QR where Q is k X kand R is k x n.
3. Form the eigenvalues of RR’, i.e., we'll compute RR’ = PAP’.
4. Form X’X = QPAP’Q’ and compare it with the eigen decomposition X’ X = PAP’.
5. Tt will turn out that that A = A and that P = QP.
Let’s verify conjecture 5 with some Python code.

Start by simulating a random (n, k) matrix X.

k =5

n = 1000

generate some random moments
@ = np.random.random(size=k)

= np.random.random((k, k))
=C.T @ C

M Q

X 1s random matrix where each column follows multivariate normal dist.

X = np.random.multivariate_normal ([, &, size=n)
X.shape
(1000, 5)

2.7.)R and PCA 35

Tools and Techniques for Computational Economics

Let’s apply the QR decomposition to X".
Q, R = adjust_sign (*QR_Decomposition(X.T))

Check the shapes of @ and R.

Q.shape, R.shape

((5, 5), (5, 1000))

Now we can construct RR’ = PAP’ and form an eigen decomposition.

RR =R @ R.T

[, P_tilde np.linalg.eigh (RR)
N = np.diag (@)

We can also apply the decomposition to X’ X = PAP’.
XX = X.T @ X

[_hat, P = np.linalg.eigh (XX)
N_hat = np.diag([@_hat)

Compare the eigenvalues that are on the diagonals of A and A.

@, @_hat

(array ([13.69522485, 453.32701014, 576.93233248, 754.61505888,
8872.61109916]),

array ([13.69522485, 453.32701014, 576.93233248, 754.61505888,
8872.611099161))

Let’s compare P and Qﬁ.

Again we need to be careful about sign differences between the columns of P and Qﬁ
QP_tilde = Q @ P_tilde

np.abs (P @ diag_sign(P) - QP_tilde @ diag_sign (QP_tilde)) .max()

6.8833827526759706e-15

Let’s verify that X’ X can be decomposed as Q PAP’Q’.

QPNPQ = Q @ P_tilde @ A @ P_tilde.T @ Q.T
np.abs (QPAPQ — XX) .max ()

5.6843418860808015e-12

36 Chapter 2. QR Decomposition

CHAPTER
THREE

CIRCULANT MATRICES

3.1 Overview

This lecture describes circulant matrices and some of their properties.
Circulant matrices have a special structure that connects them to useful concepts including
* convolution
¢ Fourier transforms
¢ permutation matrices
Because of these connections, circulant matrices are widely used in machine learning, for example, in image processing.
We begin by importing some Python packages
import numpy as np

from numba import njit
import matplotlib.pyplot as plt

np.set_printoptions (precision=3, suppress=True)

3.2 Constructing a Circulant Matrix

To construct an N x N circulant matrix, we need only the first row, say,

[CO Cl CQ 03 C4 tee CN*I] .

After setting entries in the first row, the remaining rows of a circulant matrix are determined as follows:

Co S Cy C3 €4 -+ Cn
CN-1 Co €1 € C3 - Cn_2
CN—2 CN—1 € €1 C -+ Cn_3
C = : : : : oo : 3.1
Cq C4 C5 Cg Cp v Cy
Coy C3 ¢4 Cy Cg €
L G Co €3 C C5 Co

It is also possible to construct a circulant matrix by creating the transpose of the above matrix, in which case only the first
column needs to be specified.

Let’s write some Python code to generate a circulant matrix.

37

Tools and Techniques for Computational Economics

@njit
def construct_cirlulant (row) :

N row.size

C = np.empty ((N, N))

for i in range (N):

C[i, 1:] = row[:N-1i]
Cl[i, :1] = row[N-i:]
return C
a simple case when N = 3

construct_cirlulant (np.array([1., 2., 3.1))

array ([[1., 2., 3.1,
[3., 1., 2.]
[2., 3., 1

3.2.1 Some Properties of Circulant Matrices

Here are some useful properties:
Suppose that A and B are both circulant matrices. Then it can be verified that
 The transpose of a circulant matrix is a circulant matrix.
¢ A+ B is a circulant matrix
e AB is a circulant matrix
« AB=BA
Now consider a circulant matrix with first row
c=lcg ¢ v eyl
and consider a vector
a=lag a; - ay_4

The convolution of vectors ¢ and a is defined as the vector b = ¢ * a with components

n—1
bk‘ = Z Ckiia,i (3'2)
=0

We use * to denote convolution via the calculation described in equation (3.2).
It can be verified that the vector b satisfies
b=C"a

where C7 is the transpose of the circulant matrix defined in equation (3.1).

38 Chapter 3. Circulant Matrices

Tools and Techniques for Computational Economics

3.3 Connection to Permutation Matrix

A good way to construct a circulant matrix is to use a permutation matrix.

Before defining a permutation matrix, we’ll define a permutation.

A permutation of a set of the set of non-negative integers {0, 1,2, ...} is a one-to-one mapping of the set into itself.
A permutation of a set {1,2, ..., n} rearranges the n integers in the set.

A permutation matrix is obtained by permuting the rows of an n x n identity matrix according to a permutation of the
numbers 1 to n.

Thus, every row and every column contain precisely a single 1 with 0 everywhere else.
Every permutation corresponds to a unique permutation matrix.

For example, the N x N matrix

60100 - 0
06 010 - 0
S 63
0000 -1
1000 - 0

serves as a cyclic shift operator that, when applied to an N x 1 vector h, shifts entries in rows 2 through N up one row
and shifts the entry in row 1 to row V.

Eigenvalues of the cyclic shift permutation matrix P defined in equation (3.3) can be computed by constructing

~A 1 0 0 -« 0
0 A 1 0 0
pa=| " O _:A% 0
0 0 0 0 1
1 0 0 0 —A

and solving
det(P— M) = (=1)NMAN —1=0

Eigenvalues \; can be complex.
Magnitudes | A; | of these eigenvalues \; all equal 1.
Thus, singular values of the permutation matrix P defined in equation (3.3) all equal 1.

It can be verified that permutation matrices are orthogonal matrices:

pPp =1

3.3. Connection to Permutation Matrix 39

https://mathworld.wolfram.com/PermutationMatrix.html

Tools and Techniques for Computational Economics

3.4 Examples with Python

Let’s write some Python code to illustrate these ideas.

@njit
def construct_P (N):

P = np.zeros ((N, N))

for i in range (N-1):

P[i, i+1] = 1
P[-1, 0] =1
return P

P4 = construct_P (4)
P4

array([[0., 1., 0., 0.],
[0., 0., 1., 0.1,
[0., 0., 0., 1.1,
Aoy Q©op Oop @11

compute the eigenvalues and eigenvectors
@, O = np.linalg.eig(P4)

for i in range(4):
print (£'@{i} = {A[i]l:.1f} \nvec{i} = {Q[i, :]1}\n")

[0 = -1.0+0.07
vecO = [-0.540.3 0.540.3 0.5-0.3 -0.5+0.75]

@1 = -0.0+1.07
vecl = [0.540.3 -0. +0.53 -0. -0.5F —0.5+0.3]

B2 = -0.0-1.07
vec2 = [-0.540.3 -0.5-0.9 —-0.5+0.3 -0.5+0.5]

@3 = 1.0+0.07
vec3 = [0.5+0.3 0. -0.5 0. +0.5j -0.5+0.7]
In graphs below, we shall portray eigenvalues of a shift permutation matrix in the complex plane.
These eigenvalues are uniformly distributed along the unit circle.
They are the n roots of unity, meaning they are the n numbers z that solve 2™ = 1, where z is a complex number.

In particular, the n roots of unity are

i
zzmp(%k), k=0,...N—1

where j denotes the purely imaginary unit number.

40 Chapter 3. Circulant Matrices

Tools and Techniques for Computational Economics

fig, ax = plt.subplots (2, 2, figsize=(10, 10))

for i, N in enumerate([3, 4, 6, 8]):

row_i =1 // 2
col i =1 % 2
P construct_P (N)

[29)
@]

= np.linalg.eig(P)

circ = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
ax[row_i, col_i].add_patch(circ)

for j in range (N):
ax[row_i, col_i].scatter (@A[j].real, @A[j].imag, c='b")

ax[row_i, col_i].set_title(f'N = {(N}")
ax[row_i, col_i].set_xlabel ('real')

ax[row_1i, col_i].set_ylabel ('imaginary')

plt.show ()

3.4. Examples with Python 41

Tools and Techniques for Computational Economics

For a vector of coefficients {c; }"_}, eigenvectors of P are also eigenvectors of

Consider an example in which N = 8 and let w = e

imaginary

imaginary

1.00 A

0.75 7

0.50 1

0.25 4

0.00 4

—0.25

—0.50

—0.75 A

—1.00 A

imaginary

-1.0

T
0.5

T
0.0
real
N =

1.00 A

0.75 1

0.50 4

0.25 1

0.00 1

—0.25 1

—0.50 A

—0.75 A

—1.00

imaginary

T
0.0
real

0.5

1.00 4

0.75 7

0.50 1

0.25 4

0.00 4

—0.25

—0.50

—0.75 A

—1.00 A

-1.0

T T
—0.5 0.0 0.5 1.0
real
N =

1.00 +

0.75 1

0.50 4

0.25 1

0.00 4

—0.25 1

—0.50 A

—0.75

—1.00

real

C == COI + Cl_P + C2P2 + se + CN71PN71.

—2mj/N

It can be verified that the matrix Fg of eigenvectors of Py is

[T S U S S S
S & & & &g &g

The matrix Fy defines a Discete Fourier Transform.

£

N O Otk W N

SERSIRSS

AR

14

—

S
'S

49

g & 8 g &8

42

Chapter 3. Circulant Matrices

https://en.wikipedia.org/wiki/Discrete_Fourier_transform

Tools and Techniques for Computational Economics

To convert it into an orthogonal eigenvector matrix, we can simply normalize it by dividing every entry by /8.

* stare at the first column of Fy above to convince yourself of this fact

The eigenvalues corresponding to each eigenvector are {w’ }]7:0 in order.

def construct_F (N):

w = np.e ** (-complex (0, 2*np.pi/N))
F = np.ones((N, N), dtype=complex)
for i in range(l, N):
F[i, 1:] = w ** (i * np.arange(l, N))

return F, w

F8, w =

construct_F (8)

(0.7071067811865476-0.70710678118654757)

F8

+0.
+0.

array ([[+0.7

+0.5 ., 1.

, 1.

i q J J

1. J J
[1. +0.5 , 0.707-0.7073, 0. -1.5 ,
-1. -0.3 , -0.707+0.707§, -0. +1.5
[1. +0.5 , ©0. -1.3 , -1. -0.35 ,

1. +0.5 , 0. -1.5 , -1. -0.5 ,
[1. +0.9 , -0.707-0.7073, -0. +1.3 ,
-1. -0.3 , 0.707+40.7074, O. -1.3 ,
[1. +0.5 , -1. -0.5 , 1. +0.3 ,

1. +0.5 , -1. -0.39 , 1. 0.3 ,
[1. +0.3 , -0.707+0.7073, 0. -1.3 ,
-1. -0.5 , 0.707-0.7073, -0. +1.5
[1. +0.9 , -0 +1.9 ., -1. -0.3 ,

1. +0.5 , -0 +1.5 , -1. -0.5 ,
[1. +0.9 , 0.707+0.7073, -0. +1.3 ,
-1. -0.§ , -0.707-0.707§, 0. -1.5

normalize
Q8 = F8 / np.sqgrt (8)

verify the orthogonality (unitarity)
Q8 @ np.conjugate (Q8)

array ([[1.+0.3, —-0.40.3, -0.+40.3, —-0.+40.3, 0.+0.7,
0.40.91,

[-0.-0.3, 1.40.3, -0.40.3, -0.40.3, -0.40.7,
0.40.91,

[-0.-0.3, -0.-0.3, 1.+0.3, -0.40.3, —-0.+0.9,

1. +0.
1. +0.
.707-0.
0.707+0.
+1.
+1.
0.707-0.
.707+0.

0.40.7,
0.40.7,

-0.40.7,

=05
0.707+0.
o 107=0 ¢
0o =d.

.707+0.
0.707-0.

0.40.79,
0.40.7,

0.+0.73,

(continues on next page)

3.4. Examples with Python

43

Tools and Techniques for Computational Economics

(continued from previous page)

0.40.91,

[-0.-0.3, -0.-0.3, -0.-0.3, 1.40.3, —-0.+0.3, -0.+0.3, —-0.+0.7,
-0.40.45],

[0.-0.§, -0.-0.3, -0.-0.9, -0.40.3, 1.40.9, -0.+40.9, —0.+0.7,
-0.40.51,

[0.-0.§, 0.-0.3, -0.-0.3, -0.-0.3, -0.-0.3, 1.+40.3, -0.+0.7,
-0.40.4],

[0.-0.§, 0.-0.3, 0.-0.3, -0.-0.3, -0.-0.3, -0.-0.9, 1.+0.7,
-0.40.4],

[0.-0.§, 0.-0.3, 0.-0.j, -0.-0.3, -0.-0.3, -0.-0.3, —-0.-0.7,
1.40.311)

Let’s verify that kth column of Qy is an eigenvector of Py with an eigenvalue w*.

P8 = construct_P (8)

diff_arr = np.empty (8, dtype=complex)

for j in range(8):
diff = P8 @ Q8[:, Jj] — w ** 3 * Q8[:, 7l
diff_arr[j] = diff @ diff.T

diff_arr
array([0.+0.3j, -0.+0.j, -0.40.3, -0.+0.3, -0.+0.3, -0.+0.3, -0.+0.7,
-0.40.31)
3.5 Associated Permutation Matrix

Next, we execute calculations to verify that the circulant matrix C' defined in equation (3.1) can be written as
C=cyl+c,P++c, P*!

and that every eigenvector of P is also an eigenvector of C.

We illustrate this for N = 8 case.

c = np.random.random(8)

array([0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776])

C8 = construct_cirlulant (c)

Compute ¢yl + ¢y P + -+ ¢, P" L.

44 Chapter 3. Circulant Matrices

Tools and Techniques for Computational Economics

C = np.zeros ((N, N))
np.eye (N)

o
Il

for i in range(N) :
C += c[i] * P
P =P8 @FP

C
array([[0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776],
[0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461],
[0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394],
[0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839],
[0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779],
[0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387],
[0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504],
[0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985]1)
c8
array([[0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776],
[0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461],
[0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394],
[0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839],
[0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779],
[0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387],
[0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504],
[0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985]1)

Now let’s compute the difference between two circulant matrices that we have constructed in two different ways.

np.abs(C - C8) .max ()

. 7
!is an eigenvector of Cy associated with an eigenvalue > heo CiW

The kth column of Py associated with eigenvalue w*~
[C8 = np.zeros (8, dtype=complex)
for j in range(8):

for k in range(8):
B_C8[J] += clk] * w ** (J * k)

[_C8

array ([5.125+0.9 , 0.222-0.0063, 0.976+0.6563, 0.07 -0.1557,
0.22 -0.9 , 0.07 +0.1559, 0.976-0.6563, 0.222+0.0067])

We can verify this by comparing C8 @ 08[:, j] with@_C8[j] * Q8[:, 3J].

hk

3.5. Associated Permutation Matrix

45

Tools and Techniques for Computational Economics

verify
for j in range(8):
diff = C8 @ Q8[:, jl - B.C8[]J] * 08[:,]I

print (diff)

[0.40.9 0.40.9 0.+0.3 0.40.3 0.40.5 0.40.3 0.40.3 0.40.3]
[0.40.§ 0.-0.3 -0.-0.3 -0.-0.3 -0.-0.3 -0.-0.3 -0.40.5 —0.40.7]
[0.-0.§ -0.-0.F -0.-0.3 —-0.40.§ 0.-0.9 -0.-0.3 —0.40.3 0.40.7]
[-0.40.9 -0.-0.3 -0.40.3 0.-0.3 -0.-0.3 —-0.40.35 0.-0.3 -0.-0.7]
[0.40.9 -0.-0.35 0.40.3 -0.-0.3 0.-0.3 -0.-0.3 0.40.3 -0.-0.7]
[0.40.9 -0.-0.5 0.40.3 -0.-0.§ 0.-0.9 0.4+0.3 -0.-0.35 0.-0.7]
[0.40.9 -0.-0.35 0.-0.3 0.40.3 -0.-0.3 0.-0.3 0.-0.3 0.40.7]
[-0.40.§ 0.-0.5 0.-0.3 0.-0.3 0.-0.3 0.-0.3 0.40.3 0.40.7]

3.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) allows us to represent a discrete time sequence as a weighted sum of complex
sinusoids.

Consider a sequence of IV real number {x P o

The Discrete Fourier Transform maps {z; W]—:B into a sequence of complex numbers { X}V !

where
N—-1 .
Xk: — Z T e 2
n=0
def DFT(x):

"The discrete Fourier transform."

N = len(x)
w = np.e ** (-complex (0, 2*np.pi/N))

X = np.zeros (N, dtype=complex)
for k in range (N) :
for n in range(N):

X[k] += x[n] * w ** (k * n)

return X

Consider the following example.

1/2 n=0,1
T, = k
0 otherwise
X = np.zeros (10)
x[0:2] = 1/2
X

46 Chapter 3. Circulant Matrices

Tools and Techniques for Computational Economics

array([0.5, 0.5, 0. , O. , O. , O. , O. , O. , O. , O. 1)

Apply a discrete Fourier transform.

X = DFT (x)

array([1. +0.3 , 0.905-0.2943, 0.655-0.4763, 0.345-0.4767,
0.095-0.2945, -0. +0.9 , 0.095+40.2943, 0.345+0.4767,
0.655+0.4769, 0.905+0.29457])

We can plot magnitudes of a sequence of numbers and the associated discrete Fourier transform.
def plot_magnitude (x=None, X=None) :

data = []

names = []

xs = []

if (x is not None) :
data.append (x)
names.append('x")
xs.append('n')

if (X is not None) :
data.append (X)
names.append ('X")
xs.append('J")

num = len (data)
for i in range (num) :
n = data[i].size

plt.figure(figsize=(8, 3))
plt.scatter (range(n), np.abs(datal[i]))
plt.vlines (range(n), 0, np.abs(data[i]), color='b'")

plt.xlabel (xs[i])
plt.ylabel ('magnitude"')
plt.title (names[i])
plt.show ()

plot_magnitude (x=x, X=X)

3.6. Discrete Fourier Transform 47

Tools and Techniques for Computational Economics

0549 ¢ L

0.4 1

0.3 1

0.2 1

magnitude

0.1 1

0.0 L L]] @]]]

I

104 @

0.8 ? ?

0.6 L L

0.4 1

magnitude

0.2 1

0.0 e

The inverse Fourier transform transforms a Fourier transform X of x back to x.

The inverse Fourier transform is defined as

=z
L

ke
il

def inverse_transform(X) :

N = len (X)
w = np.e ** (complex (0, 2*np.pi/N))

x = np.zeros (N, dtype=complex)
for n in range (N):
for k in range (N):
x[n] += X[k] * w ** (k * n) / N

return x

48 Chapter 3. Circulant Matrices

Tools and Techniques for Computational Economics

inverse_transform(X)

array ([0.5+0.3, 0.5-0.3, -0. -0.3, -0. -0.3, -0. -0.3, -0. —0.7,
-0. +0.3, -0. +0.3, —-0. +0.3, -0. +0.31)

Another example is
=2 (2 11) =0,1,2,---19
Ty =2c0s (2mon |, n=0,1,2,

Since N = 20, we cannot use an integer multiple of % to represent a frequency leé'

To handle this, we shall end up using all IV of the availble frequencies in the DFT.

1

Since 1L is in between 2 and 2 (each of which is an integer multiple of

10 10
their largest magnitudes at k = 5, 6, 15, 16, not just at a single frequency.

), the complex coefficients in the DFT have

N = 20
x = np.empty (N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * 3 / 40)

X = DFT (x)

plot_magnitude (x=x, X=X)

209 @ [] L]

magnitude
= =
(=] Ln
1 1

=
wn
]

ol | 1 : T

T T T
0.0 2.5 3.0 7.5 10.0 12.5 15.0 17.5
n

3.6. Discrete Fourier Transform 49

Tools and Techniques for Computational Economics

12 1

10 ~

magnitude
o
I

SRR RERR I

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

What happens if we change the last example to x,, = 2 cos (277%71)?

Note that % is an integer multiple of 21—0.

N = 20
X = np.empty (N)

for j in range (N):
x[jJ] = 2 * np.cos(2 * np.pi * 10 * j / 40)

X = DFT (x)

plot_magnitude (x=x, X=X)

X
2049 ¢ L L L] L L] [] ® L]
1.5 1
L
g
2
on
I
E
0.5 A
0.0 L L ® o @ ® L L ®]
T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
n

50 Chapter 3. Circulant Matrices

Tools and Techniques for Computational Economics

X
20 L]
15 +
b
=
2
= 10 -
on
[18)
£
5 -
0 e @ @ 9 @ e @& @ @ @& 9 o @ 0 e @ @ @
T T T T T T T T
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5

If we represent the discrete Fourier transform as a matrix, we discover that it equals the matrix F'y; of eigenvectors of the
permutation matrix Py.

We can use the example where z,, = 2cos (2r35n) , n = 0,1,2,--19 to illustrate this.

=
|

= 20
X = np.empty (N)

for j in range (N):

x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)
x
array ([2. , -0.313, -1.902, 0.%908, 1.e618, -1.414, -1.176, 1.782,
0.618, -1.975, -0. , 1.975, -0.618, -1.782, 1.176, 1.414,

-1.618, -0.908, 1.902, 0.313])

First use the summation formula to transform x to X.

X = DFT (x)
X

array([2. +0.9 , 2. +0.5583, 2. +1.2183, 2. +2.1743, 2. +4.08773,
2.+12.7853, 2.-12.4663, 2. -3.7513, 2. —-1.8013, 2. -0.7787,
2. -0.3 , 2. +0.7783, 2. +1.8013, 2. +3.7519, 2.+12.4667,
2.-12.7853, 2. -4.0875, 2. -2.1743, 2. -1.2185, 2. -0.55873])

Now let’s evaluate the outcome of postmultiplying the eigenvector matrix F,; by the vector x, a product that we claim
should equal the Fourier tranform of the sequence {x,, } V.

F20, _ = construct_F (20)

F20 @ x

3.6. Discrete Fourier Transform 51

Tools and Techniques for Computational Economics

array([2. +0.5 , 2. +0.5583, 2. +1.2183, 2. +2.1745, 2. +4.08773,
2.+12.7853, 2.-12.4663, 2. -3.7513, 2. —-1.8013, 2. -0.7787,
2. -0.35 , 2. +0.7783, 2. +1.8013, 2. +3.7513, 2.+12.4667,
2.=lAc 188, ABe =Ao087I, Ao —BodT43, Z. =1.2ilBY, ZA. =0.85583])

Similarly, the inverse DFT can be expressed as a inverse DFT matrix Fi'.

F20_inv = np.linalg.inv (F20)

F20_inv @ X

array ([2. -0.3, -0.313+40.3, -1.902-0.3, 0.908-0.9, 1.618-0.7,

o

-1.414-0.9, -1.176+40.3, 1.782-0.3, 0.618-0.3, -1.975-0.7,
-0. +0.3, 1.975-0.3, -0.618-0.3, —-1.782+0.3, 1.176+0.7,
1.414-0.5, -1.618-0.9, -0.908+0.3, 1.902+0.3, 0.313-0.31)

52 Chapter 3. Circulant Matrices

CHAPTER
FOUR

SINGULAR VALUE DECOMPOSITION (SVD)

4.1 Overview

The singular value decomposition (SVD) is a work-horse in applications of least squares projection that form founda-
tions for many statistical and machine learning methods.

After defining the SVD, we’ll describe how it connects to
« four fundamental spaces of linear algebra
* under-determined and over-determined least squares regressions
 principal components analysis (PCA)

Like principal components analysis (PCA), DMD can be thought of as a data-reduction procedure that represents salient
patterns by projecting data onto a limited set of factors.

In a sequel to this lecture about Dynamic Mode Decompositions, we’ll describe how SVD’s provide ways rapidly to compute
reduced-order approximations to first-order Vector Autoregressions (VARs).

4.2 The Setting

Let X be an m x n matrix of rank p.
Necessarily, p < min(m,n).
In much of this lecture, we’ll think of X as a matrix of data in which
¢ each column is an individual — a time period or person, depending on the application
* each row is a random variable describing an attribute of a time period or a person, depending on the application
We'll be interested in two situations
A short and fat case in which m << n, so that there are many more columns (individuals) than rows (attributes).
« A tall and skinny case in which m >> n, so that there are many more rows (attributes) than columns (individuals).
We'll apply a singular value decomposition of X in both situations.

In the m << n case in which there are many more individuals n than attributes m, we can calculate sample moments of
a joint distribution by taking averages across observations of functions of the observations.

In this m << n case, we’ll look for patterns by using a singular value decomposition to do a principal components
analysis (PCA).

In the m >> n case in which there are many more attributes m than individuals n and when we are in a time-series
setting in which n equals the number of time periods covered in the data set X, we’ll proceed in a different way.

53

Tools and Techniques for Computational Economics

We'll again use a singular value decomposition, but now to construct a dynamic mode decomposition (DMD)

4.3 Singular Value Decomposition

A singular value decomposition of an m X n matrix X of rank p < min(m,n) is

X=UxV" 4.1)
where
Ut =1 U'U=1
Vvl =1 Viv=I
and

e U is an m x m orthogonal matrix of left singular vectors of X
* Columns of U are eigenvectors of X X "
e Vis an n x n orthogonal matrix of right singular vectors of X
 Columns of V are eigenvectors of X' X

* X is anm X n matrix in which the first p places on its main diagonal are positive numbers o4, 0y, ..., 0, called
singular values; remaining entries of X are all zero

+ The p singular values are positive square roots of the eigenvalues of the m x m matrix X X " and also of the n x n
matrix X' X

» We adopt a convention that when U is a complex valued matrix, U denotes the conjugate-transpose or
Hermitian-transpose of U, meaning that UZ is the complex conjugate of Uj;;.

+ Similarly, when V is a complex valued matrix, V" denotes the conjugate-transpose or Hermitian-transpose of
\%

The matrices U, X, V entail linear transformations that reshape in vectors in the following ways:

» multiplying vectors by the unitary matrices U and V rotates them, but leaves angles between vectors and lengths
of vectors unchanged.

» multiplying vectors by the diagonal matrix ¥ leaves angles between vectors unchanged but rescales vectors.

Thus, representation (4.1) asserts that multiplying an n x 1 vector y by the m X n matrix X amounts to performing the
following three multiplications of y sequentially:

* rotating y by computing V 'y

» rescaling V' "y by multiplying it by 2

* rotating XV "y by multiplying it by U
This structure of the m x n matrix X opens the door to constructing systems of data encoders and decoders.
Thus,

« VTyis an encoder

* X is an operator to be applied to the encoded data

» U is a decoder to be applied to the output from applying operator X to the encoded data

54 Chapter 4. Singular Value Decomposition (SVD)

Tools and Techniques for Computational Economics

We'll apply this circle of ideas later in this lecture when we study Dynamic Mode Decomposition.
Road Ahead

What we have described above is called a full SVD.

In a full SVD, the shapes of U, ¥, and V are (m, m), (m,n), (n,n), respectively.

Later we’ll also describe an economy or reduced SVD.

Before we study a reduced SVD we’ll say a little more about properties of a full SVD.

4.4 Four Fundamental Subspaces

Let € denote a column space, N denote a null space, and R denote a row space.
Let’s start by recalling the four fundamental subspaces of an m x n matrix X of rank p.

¢ The column space of X, denoted C(X), is the span of the columns of X, i.e., all vectors y that can be written as
linear combinations of columns of X. Its dimension is p.

¢ The null space of X, denoted V' (X) consists of all vectors y that satisfy Xy = 0. Its dimension is n — p.

* The row space of X, denoted R(X) is the column space of X '. It consists of all vectors z that can be written as
linear combinations of rows of X. Its dimension is p.

* The left null space of X, denoted NV (X T), consist of all vectors z such that X"z = 0. Its dimension is m — p.

For a full SVD of a matrix X, the matrix U of left singular vectors and the matrix V' of right singular vectors contain
orthogonal bases for all four subspaces.

They form two pairs of orthogonal subspaces that we’ll describe now.
Letu,;,7 = 1,...,m be the m column vectors of U and let v,,¢ = 1, ... ,n be the n column vectors of V.
Let’s write the full SVD of X as

¥ 0 T

where 3, is a p x p diagonal matrix with the p singular values on the diagonal and

Up=lu -), Ugp=lup uy
VL = [Ul Up]) UR = [Up+1 "'U’n]
Representation (4.2) implies that
X, 0
X[V, Vg]=[U, Ug [Op O]
or
XV, =U. %
bR 4.3)
XVp=0
or
Xv, =0, 1=1,...,p @)

Xv;, =0, 1=p+1,...,n

Equations (4.4) tell how the transformation X maps a pair of orthonormal vectors v;, v, for i and j both less than or equal

to the rank p of X into a pair of orthonormal vectors u,, u ;.

4.4. Four Fundamental Subspaces 55

Tools and Techniques for Computational Economics

Equations (4.3) assert that

C(X)=cU,)
N(X) =C(Vg)

Taking transposes on both sides of representation (4.2) implies

XTU, Ugl=[Vy Vg [Zp O]

0 0
or
XU, =V, %
L 4.5)
XTUR - 0
or
XTu, =0, i=1,...,p
4.6)

X'u; =0 i=p+1,....m

Notice how equations (4.6) assert that the transformation X " maps a pair of distinct orthonormal vectors w,, u ; for i and
J both less than or equal to the rank p of X into a pair of distinct orthonormal vectors v;, v, .

Equations (4.5) assert that
RX)=C(XT)=e(V,)
N(XT) =C(Ug)

Thus, taken together, the systems of equations (4.3) and (4.5) describe the four fundamental subspaces of X in the
following ways:

C(X) =C(UL)

N(XT) = C(Ug)
RX)=C(X")=0e(V,) 4.7
N(X) =C(Vg)

Since U and V' are both orthonormal matrices, collection (4.7) asserts that
* U, is an orthonormal basis for the column space of X
e Up, is an orthonormal basis for the null space of X "
 V}, is an orthonormal basis for the row space of X
* Vp is an orthonormal basis for the null space of X

We have verified the four claims in (4.7) simply by performing the multiplications called for by the right side of (4.2) and
reading them.

The claims in (4.7) and the fact that U and V' are both unitary (i.e, orthonormal) matrices imply that
+ the column space of X is orthogonal to the null space of X "
* the null space of X is orthogonal to the row space of X
Sometimes these properties are described with the following two pairs of orthogonal complement subspaces:
» C(X) is the orthogonal complement of V(X)
* R(X) is the orthogonal complement N (X)

Let’s do an example.

56 Chapter 4. Singular Value Decomposition (SVD)

Tools and Techniques for Computational Economics

import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt

Having imported these modules, let’s do the example.
np.set_printoptions (precision=2)

Define the matrix

A = np.array([[1, 2, 3, 4, 51,
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 71,
(4, 5, 6, 7, 81,
[5, 6, 7, 8, 911)

’

~
~

Compute the SVD of the matrix
U, S, V = np.linalg.svd (A, full_matrices=True)

Compute the rank of the matrix
rank = np.linalg.matrix_rank (A)

Print the rank of the matrix
print ("Rank of matrix:\n", rank)
print ("s: \n", 9)

Compute the four fundamental subspaces
row_space = U[:, :rank]

col_space V[:, :rank]

null_space = V[:, rank:]

left_null_space = U[:, rank:]

print ("U:\n", U)

print ("Column space:\n", col_space)

print ("Left null space:\n", left_null_space)
print ("V.T:\n", V.T)

print ("Row space:\n", row_space.T)

print ("Right null space:\n", null_space.T)

Rank of matrix:

2
S:

[2.69e+01 1.86e+00 8.62e-16 5.26e-16 2.77e-17]
U:
[[-0.27 -0.73 -0.53 -0.34 0.03]
[-0.35 -0.42 0.24 0.8 -0.07]
[-0.43 -0.11 0.67 -0.41 0.43]
[-0.51 0.19 0.09 -0.22 -0.8]
[-0.59 0.5 -0.46 0.17 0.4]
Column space:

[[-0.27 -0.35]

]

[0.73 0.42]

[-0.03 0.16]

[-0.51 0.82]

[0.37 0.0611
Left null space:

(continues on next page)

4.4. Four Fundamental Subspaces 57

Tools and Techniques for Computational Economics

(continued from previous page)

[-0.53 -0.34 0.03]

[

[0.24 0.8 -0.07]
[0.67 -0.41 0.43]
[©:09 =0.22 =08 |
[-0.46 0.17 0.4]]

-0.27 0.73 -0.03 -0.51 0.37]
.35 0.42 0.16 0.82 0.06]
.43 0.11 0.25 -0.23 -0.83]
.51 -0.19 -0.84 0.04 -0.02]
.59 -0.5 0.46 -0.12 0.41]
Row space:

[[-0.27 -0.35 -0.43 -0.51 -0.59]

[-0.73 -0.42 -0.11 0.19 0.5 1]
Right null space:

[[-0.43 0.11 0.25 -0.23 -0.83]

[-0.51 -0.19 -0.84 0.04 -0.02]

(=089 =08 0.46 -0.12 0.417]]

]

4.5 Eckart-Young Theorem

Suppose that we want to construct the best rank 7 approximation of an m x n matrix X.

By best, we mean a matrix X,. of rank r < p that, among all rank 7 matrices, minimizes
1X = X, |

where || - || denotes a norm of a matrix X and where X, belongs to the space of all rank r matrices of dimension m X n.

Three popular matrix norms of an m x n matrix X can be expressed in terms of the singular values of X

X
Xyl _ o

« the spectral or [* norm || X ||, = max

* the Frobenius norm || X||r = \/m

* the nuclear norm || X||y =0y + - + 0,

The Eckart-Young theorem states that for each of these three norms, same rank r matrix is best and that it equals
X, = o, UV + 0,0V, + -4 0,U, VT (4.8)
This is a very powerful theorem that says that we can take our m x n matrix X that in not full rank, and we can best

approximate it by a full rank p X p matrix through the SVD.

Moreover, if some of these p singular values carry more information than others, and if we want to have the most amount
of information with the least amount of data, we can take r leading singular values ordered by magnitude.

We'll say more about this later when we present Principal Component Analysis.
You can read about the Eckart-Young theorem and some of its uses here.

We’ll make use of this theorem when we discuss principal components analysis (PCA) and also dynamic mode decom-
position (DMD).

58 Chapter 4. Singular Value Decomposition (SVD)

https://en.wikipedia.org/wiki/Low-rank_approximation

Tools and Techniques for Computational Economics

4.6 Full and Reduced SVD’s

Up to now we have described properties of a full SVD in which shapes of U, 3, and V' are (m,m), (m,n), (n,n),
respectively.

There is an alternative bookkeeping convention called an economy or reduced SVD in which the shapes of U, ¥ and V'
are different from what they are in a full SVD.

Thus, note that because we assume that X has rank p, there are only p nonzero singular values, where p = rank(X) <
min (m, n).

A reduced SVD uses this fact to express U, X, and V' as matrices with shapes (m, p), (p,p), (n,p).
You can read about reduced and full SVD here https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
For a full SVD,
Uu' =1 U'U=1
Vv =1 ViV =I
But not all these properties hold for a reduced SVD.
Which properties hold depend on whether we are in a tall-skinny case or a short-fat case.
¢ In a tall-skinny case in which m >> n, for a reduced SVD
UUT +1 U'U=1
Vv =1 ViV =I
¢ In a short-fat case in which m << n, for a reduced SVD
Uu' =1 U'U=1
Vv =1 VIV £T

When we study Dynamic Mode Decomposition below, we shall want to remember these properties when we use a reduced
SVD to compute some DMD representations.

Let’s do an exercise to compare full and reduced SVD’s.
To review,
¢ ina full SVD
-Uismxm
- Yismxn
- Visnxn
* in areduced SVD
- Uismxp
- XispXxp
- Visnxp
First, let’s study a case in whichm =5 >n = 2.

(This is a small example of the tall-skinny case that will concern us when we study Dynamic Mode Decompositions
below.)

4.6. Full and Reduced SVD’s 59

https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html

Tools and Techniques for Computational Economics

import numpy as np

X = np.random.rand(5,2)

U, S, V = np.linalg.svd (X, full_matrices=True) # full SVD

Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print ('U, S, V =")

U, 8, V
U, S, V=
(array([[-0.31, 0.95, 0.01, 0.05, 0.08],
[-0.34, -0.03, -0.4 , -0.47, -0.7 1,
[-0.41, -0.11, ©0.87, -0.14, -0.211,
[-0.44, -0.17, -0.15, 0.83, -0.257,
[-0.66, -0.25, -0.23, -0.25, 0.6311),
array ([1.62, 0.41]),
array ([[-0.89, -0.46],
[-0.46, 0.8911))
print ('Uhat, Shat, Vhat = ")

Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array ([[-0.31, 0.95],
[-0.34, -0.03],
[-0.41, -0.11],
[-0.44, -0.17],
[-0.66, —-0.2511),

array ([1.62, 0.41]),

array ([[-0.89, -0.46],
[-0.46, 0.8911))

rr = np.linalg.matrix_rank (X)
print (f'rank of X = {rr}'")

rank of X = 2

Properties:
» Where U is constructed viaa full SVD,U'U = I, andUU " = I,

« Where U is constructed via a reduced SVD, although UTU = it happens that oot +1

PXP’ mxm

We illustrate these properties for our example with the following code cells.
UTU = U.TQU
UUT = UQU.T

print ('UUT, UTU = ')
UUT, UTU

uuT, UTU =

60 Chapter 4. Singular Value Decomposition (SVD)

Tools and Techniques for Computational Economics

(array ([[1.00e+00, 1.67e-16, -6.94e-17, -1.32e-16, -1.18e-16],
[1.67e-16, 1.00e+00, 2.78e-17, 5.55e-17, 5.55e-17],
[-6.94e-17, 2.78e-17, 1.00e+00, 1.39e-17, 5.55e-17],
[-1.32e-16, 5.55e-17, 1.39e-17, 1.00e+00, 1.11le-16],
[-1.18e-16, 5.55e-17, 5.55e-17, 1.1le-16, 1.00e+00]11]),
array ([[1.00e+00, 2.50e-16, 0.00e+00, 0.00e+00, 5.55e-17],
[2.50e-16, 1.00e+00, -8.33e-17, -1.73e-16, -1.94e-16],
[0.00e+00, -8.33e-17, 1.00e+00, -9.02e-17, -5.55e-17],
[0.00e+00, -1.73e-16, -9.02e-17, 1.00e+00, -5.55e-17],
[5.55e-17, -1.94e-16, -5.55e-17, -5.55e-17, 1.00e+0011))
UhatUhatT = Uhat@Uhat.T
UhatTUhat = Uhat.TQ@Uhat
print ('UhatUhatT, UhatTUhat= ")
UhatUhatT, UhatTUhat
UhatUhatT, UhatTUhat=
(array([[0.99, ©0.08, 0.02, -0.02, -0.031,
[0.08, 0.12, 0.14, 0.15, ©0.23],
[0.02, 0.14, ©0.18, 0.2, 0.3 1,
[-0.02, 0.15, 0.2, 0.22, 0.33],
[-0.03, 0.23, 0.3, 0.33, 0.4911),
array ([[1.0e+00, 2.5e-16],
[2 5e 16, 1.0e+0011]))
Remarks:

The cells above illustrate the application of the full _matrices=True and full_matrices=False options.
Using full_matrices=False returns a reduced singular value decomposition.

The full and reduced SVD’s both accurately decompose an m x n matrix X

When we study Dynamic Mode Decompositions below, it will be important for us to remember the preceding properties
of full and reduced SVD’s in such tall-skinny cases.

Now let’s turn to a short-fat case.

To illustrate this case, we’ll set m = 2 < 5 = n and compute both full and reduced SVD’s.

import numpy as np

X = np.random.rand(2,5)

U, S, V = np.linalg.svd(X, full_matrices=True) # full SVD

Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print ('U, S, V = ")

u, S, V

g, s, v =

(array ([[0.74, -0.671,
[0.67, 0.7411),

array([1.69, 0.571),

array ([[0.73, 0.47, 0.16, 0.43, 0.17],
[-0.19, 0.68, 0.45, -0.53, -0.13],

(continues on next page)

4.6. Full and Reduced SVD’s 61

Tools and Techniques for Computational Economics

[0.04, -0.47, 0.87, 0.12, 0.03]
[=0.62;, 0.8 ; 0od ; 0.72;, =0.09]
[-0.21, 0.05, 0.02, -0.09, 0.97]

’

1))

print ('Uhat, Shat, Vhat = ")
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array ([[0.74, -0.67],
[0.67, 0.7411),

array ([1.69, 0.57]),

array([[0.73, 0.47, 0.l16, 0.43, 0.17],
[-0.19, 0.68, 0.45, -0.53, -0.1311))

Let’s verify that our reduced SVD accurately represents X
SShat=np.diag(Shat)

np.allclose (X, Uhat@SShat@Vhat)

True

4.7 Polar Decomposition

(continued from previous page)

A reduced singular value decomposition (SVD) of X is related to a polar decomposition of X

X =5Q
where
S=UsUT
Q=U0V"
Here

e Sisanm x m symmetric matrix

e () is an m x n orthogonal matrix
and in our reduced SVD

e U isan m X p orthonormal matrix

e Yisap X p diagonal matrix

e Visann x p orthonormal

62 Chapter 4. Singular Value Decomposition (SVD)

Tools and Techniques for Computational Economics

4.8 Application: Principal Components Analysis (PCA)

Let’s begin with a case in which n >> m, so that we have many more individuals n than attributes m.

The matrix X is short and fat in an n >> m case as opposed to a tall and skinny case with m >> n to be discussed
later.

We regard X as an m X n matrix of data:

X:[X1|X2|"'|Xn]

Xy 1
) Xoi| . . . Ty

where for j = 1, ..., n the column vector X ; = ~J | is a vector of observations on variables | ~,
Xomj L,

In a time series setting, we would think of columns j as indexing different times at which random variables are observed,
while rows index different random variables.

In a cross-section setting, we would think of columns j as indexing different individuals for which random variables are
observed, while rows index different attributes.

As we have seen before, the SVD is a way to decompose a matrix into useful components, just like polar decomposition,
eigendecomposition, and many others.

PCA, on the other hand, is a method that builds on the SVD to analyze data. The goal is to apply certain steps, to help
better visualize patterns in data, using statistical tools to capture the most important patterns in data.

Step 1: Standardize the data:
Because our data matrix may hold variables of different units and scales, we first need to standardize the data.
First by computing the average of each row of X.
_ 1 m
Xj=— 2 T;

We then create an average matrix out of these means:

1
_ 1 _ _ -
X = [X1|X2|“'|Xn]
1

And subtract out of the original matrix to create a mean centered matrix:
B=X-X

Step 2: Compute the covariance matrix:

Then because we want to extract the relationships between variables rather than just their magnitude, in other words, we
want to know how they can explain each other, we compute the covariance matrix of B.

1
C=-B"B
n

Step 3: Decompose the covariance matrix and arrange the singular values:

If the matrix C' is diagonalizable, we can eigendecompose it, find its eigenvalues and rearrange the eigenvalue and eigen-
vector matrices in a decreasing other.

4.8. Application: Principal Components Analysis (PCA) 63

Tools and Techniques for Computational Economics

If C'is not diagonalizable, we can perform an SVD of C":
BTB=vx'U'Uxv’
=Vy'xv’
LTy, T
C==-V3'xV
n
We can then rearrange the columns in the matrices V' and X so that the singular values are in decreasing order.

Step 4: Select singular values, (optional) truncate the rest:

We can now decide how many singular values to pick, based on how much variance you want to retain. (e.g., retaining
95% of the total variance).

We can obtain the percentage by calculating the variance contained in the leading r factors divided by the variance in
total:

Step 5: Create the Score Matrix:

=UX

4.9 Relationship of PCA to SVD

To relate an SVD to a PCA of data set X, first construct the SVD of the data matrix X:

Let’s assume that sample means of all variables are zero, so we don’t need to standardize our matrix.
X =02V =0, UV} + 0,0,V +--+0,U,V, (4.9)
where

U = [U,|Uy]... U,

m]

In equation (4.9), each of the m x n matrices UjVj-r is evidently of rank 1.

Thus, we have

U V1T Uiy VzT UlprT
T T T

X=o0 U%lj/l + 0y U%?"./? +.to UQ?’YP (4.10)
Um 1 VlT Um 2 V2T Um P V;JT

Here is how we would interpret the objects in the matrix equation (4.10) in a time series context:

s foreach k = 1, ..., n, the object {V}; %1 is a time series for the kth principal component

64 Chapter 4. Singular Value Decomposition (SVD)

Tools and Techniques for Computational Economics

k =1,...,mis a vector of loadings of variables X on the kth principal component, ¢ = 1, ..., m

» o, foreach k = 1, ..., p is the strength of kth principal component, where strength means contribution to the
overall covariance of X.

4.10 PCA with Eigenvalues and Eigenvectors

‘We now use an eigen decomposition of a sample covariance matrix to do PCA.
Let X,,,,, be our m X n data matrix.

Let’s assume that sample means of all variables are zero.

We can assure this by pre-processing the data by subtracting sample means.

Define a sample covariance matrix € as
Q=XxXT

Then use an eigen decomposition to represent £ as follows:

Q= PAPT
Here
e Pis'm x m matrix of eigenvectors of {2
* A is a diagonal matrix of eigenvalues of)
We can then represent X as
X = Pe
where
e=P'X
and
e’ = A.
We can verify that
XXT = PAPT. (4.11)

It follows that we can represent the data matrix X as

€
€2

X = [X,|Xy] . |1X,] = [PL|Py] .. | P,)] =Pie, + Pyey + ... + P,

€m

To reconcile the preceding representation with the PCA that we had obtained earlier through the SVD, we first note that

2y — 2
ej—)\j_a].

4.10. PCA with Eigenvalues and Eigenvectors 65

Tools and Techniques for Computational Economics

€.

Now define €; = ﬁ, which implies that €jEJT =1.

Therefore

X - \/rlplgl + \/EPQENZ + ...+ V)‘mpme:n

o1 P& + oy Pyés + ...+ 0, P, €

m= m-m?

which agrees with
X=0,0V," +0,U,Vy" + ... +0,UV,"
provided that we set
* U; = P; (a vector of loadings of variables on principal component j)

. VkT = €, (the kth principal component)

Because there are alternative algorithms for computing P and U for given a data matrix X, depending on algorithms used,

we might have sign differences or different orders of eigenvectors.
We can resolve such ambiguities about U and P by
1. sorting eigenvalues and singular values in descending order

2. imposing positive diagonals on P and U and adjusting signs in V" accordingly

4.11 Connections

To pull things together, it is useful to assemble and compare some formulas presented above.

First, consider an SVD of an m x n matrix:
X=UxvVT
Compute:

XXT=U0zvVveTuT
=Usx’U"T
=UAUT

Compare representation (4.12) with equation (4.11) above.
Evidently, U in the SVD is the matrix P of eigenvectors of X X " and ¥ " is the matrix A of eigenvalues.
Second, let’s compute
X"X=vuTuzv’
=Vyiyxyr’
Thus, the matrix V' in the SVD is the matrix of eigenvectors of X X

Summarizing and fitting things together, we have the eigen decomposition of the sample covariance matrix
XXT =PAPT

where P is an orthogonal matrix.

Further, from the SVD of X, we know that

XXT=U0sx"UT

4.12)

66 Chapter 4. Singular Value Decomposition (SVD)

Tools and Techniques for Computational Economics

where U is an orthogonal matrix.

Thus, P = U and we have the representation of X

X =Pe=UXV"
It follows that

U'X=XV"=¢
Note that the preceding implies that

el =TVTVIT =80T = A,
so that everything fits together.
Below we define a class DecomAnalysis that wraps PCA and SVD for a given a data matrix X.
class DecomAnalysis:

mmn

A class for conducting PCA and SVD.
X: data matrix
r_component: chosen rank for best approximation

mmn

def _ _init_ (self, X, r_component=None) :
self.X = X
self.Q = (X @ X.T)

self.m, self.n = X.shape
self.r = LA.matrix_rank (X)

if r_component:
self.r_component = r_component
else:
self.r_component = self.m
def pca(self):
@, P = LA.eigh(self.Q) # columns of P are eigenvectors
ind = sorted(range([d.size), key=lambda x: [A[x], reverse=True)
sort by eigenvalues
self.@ = [@A[lind]
P = P[:, ind]
self.P = P @ diag_sign (P)
self.N = np.diag(self.[d)

self.explained_ratio_pca = np.cumsum(self.[d) / self.l.sum()

compute the N by T matrix of principal components
self.@ = self.P.T @ self.X

P = self.P[:, :self.r_component]

(continues on next page)

4.11. Connections

67

Tools and Techniques for Computational Economics

@ = self.@[:self.r_component, :]

transform data
self.X_pca = P @ [

def svd(self):

U, @, VI = LA.svd(self.X)

(continued from previous page)

ind = sorted(range ([@.size), key=lambda x: [[x], reverse=True)

sort by eigenvalues
d = min(self.m, self.n)

self.@ = @A[ind]

U = U[:, ind]

D = diag_sign (U)

self.U =U @D

VI[:d, :] =D @ VT[ind, :]
self.VT = VT

self.X = np.zeros((self.m, self.n))
self.X[:d, :d] = np.diag(self.[)

@_sg = self.@ ** 2

self.explained_ratio_svd = np.cumsum(@_sq) / B_sqg.sum()

slicing matrices by the number of components to use
U = self.U[:, :self.r_component]

Y = self.Z[:self.r_component, :self.r_component]

VT = self.VT[:self.r_component, :]

transform data
self.X_svd = U @ ¥ @ VT

def fit(self, r_component):
ca

= self.P[:, :r_component]
@ = self.@[:r_component, :]

o]

#
P

transform data
self.X_pca = P @ [

svd

U = self.U[:, :r_component]

Y = self.Z[:r_component, :r_component]
VI = self.VT[:r_component, :]

transform data
self.X_svd = U @ & @ VT

def diag_sign(A):
"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(d)))

(continues on next page)

68 Chapter 4. Singular Value Decomposition (SVD)

Tools and Techniques for Computational Economics

(continued from previous page)
return D

We also define a function that prints out information so that we can compare decompositions obtained by different algo-
rithms.

def compare_pca_svd(da) :
mirrmn

Compare the outcomes of PCA and SVD.

mmn

da.pca()
da.svd()

print ('Eigenvalues and Singular values\n')

print (f'A = {da.A}\n'")
print (f'c”2 = {da.c**2}\n"')
print ('\n"')

loading matrices

fig, axs = plt.subplots(l, 2, figsize=(14, 5))
plt.suptitle('loadings"')

axs[0] .plot(da.P.T)

0] .set_title('P")

0] .set_xlabel ('m")

1] .plot(da.U.T)

axs[1l].set_title('U")

axs[1l].set_xlabel('m")

plt.show ()

axs
axs
axs

[
[
[
[
[
[

principal components

fig, axs = plt.subplots(l, 2, figsize=(14, 5))
plt.suptitle('principal components')

axs[0] .plot(da.e.T)

axs[0].set_title('e")

axs[0] .set_xlabel('n'")

[
[
[
[
[
[

axs[l].plot(da.VT[:da.r, :].T * np.sgrt(da.A))
axs[1].set_title('$V~ \top *\sqrt{\lambdal}s$"')
axs[1l].set_xlabel('n'")

plt.show ()

4.12 Exercises

Exercise 4.12.1

In Ordinary Least Squares (OLS), we learn to compute ,@ = (XTX) 'X Ty, but there are cases such as when we have
colinearity or an underdetermined system: short fat matrix.

In these cases, the (X T X) matrix is not not invertible (its determinant is zero) or ill-conditioned (its determinant is very
close to zero).

What we can do instead is to create what is called a pseudoinverse, a full rank approximation of the inverted matrix so
we can compute /3 with it.

4.12. Exercises 69

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

Tools and Techniques for Computational Economics

Thinking in terms of the Eckart-Young theorem, build the pseudoinverse matrix X * and use it to compute ,BA

Solution to Exercise 4.12.1

We can use SVD to compute the pseudoinverse:

X=UxVT
inverting X, we have:
Xt =vetuT
where:
g% 0 0 0
0o X 0 0
It = 3 P
0 0 L0
0 O 0 O
and finally:

B=Xty=VstUTy

For an example PCA applied to analyzing the structure of intelligence tests see this lecture Multivariable Normal Distri-
bution.

Look at parts of that lecture that describe and illustrate the classic factor analysis model.

As mentioned earlier, in a sequel to this lecture about Dynamic Mode Decompositions, we’ll describe how SVD’s provide
ways rapidly to compute reduced-order approximations to first-order Vector Autoregressions (VARSs).

70 Chapter 4. Singular Value Decomposition (SVD)

https://stats.quantecon.org/multivariate_normal.html
https://stats.quantecon.org/multivariate_normal.html

CHAPTER
FIVE

CLASSICAL CONTROL WITH LINEAR ALGEBRA

5.1 Overview

In an earlier lecture Linear Quadratic Dynamic Programming Problems, we have studied how to solve a special class
of dynamic optimization and prediction problems by applying the method of dynamic programming. In this class of
problems

« the objective function is quadratic in states and controls.
* the one-step transition function is linear.
¢ shocks are IID Gaussian or martingale differences.

In this lecture and a companion lecture Classical Filtering with Linear Algebra, we study the classical theory of linear-
quadratic (LQ) optimal control problems.

The classical approach does not use the two closely related methods — dynamic programming and Kalman filtering —
that we describe in other lectures, namely, Linear Quadratic Dynamic Programming Problems and A First Look at the
Kalman Filter.

Instead, they use either
* z-transform and lag operator methods, or
* matrix decompositions applied to linear systems of first-order conditions for optimum problems.
In this lecture and the sequel Classical Filtering with Linear Algebra, we mostly rely on elementary linear algebra.
The main tool from linear algebra we’ll put to work here is LU decomposition.
We'll begin with discrete horizon problems.
Then we’ll view infinite horizon problems as appropriate limits of these finite horizon problems.
Later, we will examine the close connection between LQ control and least-squares prediction and filtering problems.
These classes of problems are connected in the sense that to solve each, essentially the same mathematics is used.

Let’s start with some standard imports:

import numpy as np
import matplotlib.pyplot as plt

71

https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/kalman.html
https://python-intro.quantecon.org/kalman.html
https://en.wikipedia.org/wiki/LU_decomposition

Tools and Techniques for Computational Economics

5.1.1 References

Useful references include [Whittle, 1963], [Hansen and Sargent, 1980], [Orfanidis, 1988], [Athanasios and Pillai, 1991],
and [Muth, 1960].

5.2 A Control Problem

Let L be the lag operator, so that, for sequence {x,} we have Lx, = z,_;.

More generally, let L*x, = x, , with L°z, = x, and
d(L)=dy+dL+..+d,L™

where d,, d;, ..., d,, is a given scalar sequence.

Consider the discrete-time control problem

. al . 1., 1 2
max lim » "3 {atyt— 5 hwi = 5 d(L)yy] } (5.1)

{ys} N—=oo t—=0

where
* his a positive parameter and § € (0, 1) is a discount factor.

1/2 by which we mean lim, , _ $2a, = 0.

* {a;}>0 is a sequence of exponential order less than (5~
Maximization in (5.1) is subject to initial conditions for y_,y_o ..., Y_,,-

Maximization is over infinite sequences {y; };~-

5.2.1 Example

The formulation of the LQ problem given above is broad enough to encompass many useful models.

As a simple illustration, recall that in L.Q Control: Foundations we consider a monopolist facing stochastic demand shocks
and adjustment costs.

Let’s consider a deterministic version of this problem, where the monopolist maximizes the discounted sum

oo
D B,
t=0
and
Ty =Py — ¢y — V(qpyr — @))* Wwith p, =g —ayq, +d,
In this expression, g, is output, ¢ is average cost of production, and d, is a demand shock.
The term 7(q,,, — ¢,)? represents adjustment costs.
You will be able to confirm that the objective function can be rewritten as (5.1) when
ca, =0ay+d, —c
* h:=2q
+ d(L) == V(I - L)

Further examples of this problem for factor demand, economic growth, and government policy problems are given in ch.
IX of [Sargent, 1987].

72 Chapter 5. Classical Control with Linear Algebra

https://python-intro.quantecon.org/lqcontrol.html

Tools and Techniques for Computational Economics

5.3 Finite Horizon Theory

We first study a finite /V version of the problem.
Later we will study an infinite horizon problem solution as a limiting version of a finite horizon problem.

(This will require being careful because the limits as N — oo of the necessary and sufficient conditions for maximizing
finite IV versions of (5.1) are not sufficient for maximizing (5.1))

We begin by

1. fixing N > m,

2. differentiating the finite version of (5.1) with respect to y,, ¥, ... , Y, and

3. setting these derivatives to zero.
Fort =0, ..., N — m these first-order necessary conditions are the Euler equations.
Fort = N —m+1,..., N, the first-order conditions are a set of terminal conditions.

Consider the term

B [d(L)y][d(L)y,]

T
M=

t=

o

N
= Zﬁt (doy, +dyyyq + -+ dyp) (doyy +dyyp 1 4+ dpy Yy)
t=0
Differentiating J with respect to y, fort =0, 1, ..., N —m gives
oJ t t+1 t+m
o 28" dyd(L)y, + 28" dy d(L)yy sy + -+ 28" dpyy d(L)Yy 1,
t

=20 (dy+d BL ™ +dy BPL 2+ +d, B L) d(L)y,
We can write this more succinctly as

oJ . 1
oy, =2p"d(BL™) d(L)y, (5.2)

Differentiating J with respect toy, fort = N —m +1,..., N gives

0J

—2 =98Nd,d(L)y
6yN 0 () N
O _ o581y + B, L] d(L)yy -
82!1\171 (5.3)
oJ
E 28N [dy + L7V dy + -+ B LT A ALY N
yN—m+1

With these preliminaries under our belts, we are ready to differentiate (5.1).

Differentiating (5.1) with respect to y, fort = 0, ..., N — m gives the Euler equations
[h+d(BL Y d(D)y, =a,, t=0,1,...,N—m (54)

The system of equations (5.4) forms a 2 X m order linear difference equation that must hold for the values of ¢ indicated.

5.3. Finite Horizon Theory 73

Tools and Techniques for Computational Economics

Differentiating (5.1) with respect to y, fort = N —m + 1, ..., N gives the terminal conditions

ﬁN(aN —hyy —dyd(L)yy) =0
pr-t (GNA —hyy_1 — (do +Bd, Lil) d(L) nyl) =0
. . ~0 (5.5
pN-mt <a’Nm+1 — YN — (do + BL7 Ny + - + ﬁm_lL_dem1>d(L)me+1> =0
In the finite N problem, we want simultaneously to solve (5.4) subject to the mm initial conditions y_, ..., y_,,, and the m

terminal conditions (5.5).
These conditions uniquely pin down the solution of the finite /V problem.

That is, for the finite N problem, conditions (5.4) and (5.5) are necessary and sufficient for a maximum, by concavity of
the objective function.

Next, we describe how to obtain the solution using matrix methods.

5.3.1 Matrix Methods

Let’s look at how linear algebra can be used to tackle and shed light on the finite horizon LQ control problem.

A Single Lag Term

Let’s begin with the special case in which m = 1.

We want to solve the system of IV + 1 linear equations

[h+d(BLY)d(L)]y,=a,, t=0,1,..,N—1

(5.6)
ANlay —hyy —dyd (L)yy] =0
where d(L) = d, + d, L.
These equations are to be solved for ¥y, ¥y, ... , ¥y as functions of ay,ay,...,a and y_;.
Let
¢(L) = b+ ¢ L+ B L' = h+d(BL™")d(L) = (h +dj + d?) + dydyL + dydySL ™"
Then we can represent (5.6) as the matrix equation
(pg—d?) ¢, O 0 0 YN ay
By ¢ o1 O ‘ 0 Yn—1 an-1
OGS Rl B)
0 Y & 2 SR Y o i ay
0 0 By oo Yo ag — 1Y
or
Wy=a (5.8)

Notice how we have chosen to arrange the y,’s in reverse time order.
The matrix W on the left side of (5.7) is “almost” a Toeplitz matrix (where each descending diagonal is constant).

There are two sources of deviation from the form of a Toeplitz matrix

74 Chapter 5. Classical Control with Linear Algebra

https://en.wikipedia.org/wiki/Toeplitz_matrix

Tools and Techniques for Computational Economics

1. The first element differs from the remaining diagonal elements, reflecting the terminal condition.
2. The sub-diagonal elements equal 3 time the super-diagonal elements.

The solution of (5.8) can be expressed in the form
j=w"a (5.9)
which represents each element ¥, of y as a function of the entire vector a.

That is, y, is a function of past, present, and future values of a’s, as well as of the initial condition y_;.

An Alternative Representation

An alternative way to express the solution to (5.7) or (5.8) is in so-called feedback-feedforward form.
The idea here is to find a solution expressing ¥, as a function of past y’s and current and future a’s.
To achieve this solution, one can use an LU decomposition of .
There always exists a decomposition of W of the form W = LU where
e Lisan (N + 1) x (N + 1) lower triangular matrix.
e Uisan (N + 1) x (N + 1) upper triangular matrix.
The factorization can be normalized so that the diagonal elements of U are unity.

Using the LU representation in (5.9), we obtain
Uy=L'a (5.10)

Since L~ is lower triangular, this representation expresses y, as a function of
¢ lagged y’s (via the term Uty), and
« current and future a’s (via the term L~'a)

Because there are zeros everywhere in the matrix on the left of (5.7) except on the diagonal, super-diagonal, and sub-
diagonal, the LU decomposition takes

* L to be zero except in the diagonal and the leading sub-diagonal.
» U to be zero except on the diagonal and the super-diagonal.

Thus, (5.10) has the form

1 U, 0 0 0 0 Yy

0 1 Uy 0 0 0 i

0 0 1 Uy .. 0 0 Yn_s

0o 0 0 1 0 0 Un_s| =

00 0 0 . 1 Uyyo "

10 O 0 0 ... 0 1 L Yo J
Ly} 0 0o .. 0 iy
Ly} Ly 0 0 ay_1
L3} L3y Ly .. 0 an_o
Ly Ly Ly's 0 a
Lvin Lite Labas o Lvhined Llag—oiyy

where L;;! is the (4, j) element of L~" and U, is the (4, j) element of U.

5.3. Finite Horizon Theory 75

https://en.wikipedia.org/wiki/LU_decomposition

Tools and Techniques for Computational Economics

Note how the left side for a given ¢ involves y, and one lagged value y,_; while the right side involves all future values of
the forcing process a;, @y 1, ..., Q-

Additional Lag Terms

We briefly indicate how this approach extends to the problem with m > 1.

Assume that 5 = 1andlet D, be the (m + 1) x (m + 1) symmetric matrix whose elements are determined from the
following formula:

Dy, = dody,_j + dydy_jiq + o+ djqdy g, k=j

Let I,

m

Let ¢; be the coefficients in the expansion ¢(L) = h + d(L~")d(L).

41 be the (m 4+ 1) x (m + 1) identity matrix.

Then the first order conditions (5.4) and (5.5) can be expressed as:

Yn an YN—m+1

D hI YN-1 _ an—1 M YN-m—2
(m+1 + m+1) : - : + :

YN-—m AN—m YN—2m

where M is (m + 1) x m and

1j

) Dy fori > j
Ofori <j

GmYN-1t P 1YN—2 T - T PoYN_—m—1 T PLYN 2t
o F P YN_2m—1 = AN
GmYn—2t Prm1YN—3 T -+ + PoYN—m—2 + P1YN_—m—3Tt

o F O YN_2m—2 = AN_m2

PmYms1 T P—1Ym ++ o+ Poy1 + O1Yp + P Y = a1
d)m,ym + (Zsm,flym,fl + d)mf? + o+ ¢Oy0 + ¢1y—1 + o+ (Zsm,yfm = Qg

As before, we can express this equation as Wy = a.

The matrix on the left of this equation is “almost” Toeplitz, the exception being the leading m x m submatrix in the upper
left-hand corner.

We can represent the solution in feedback-feedforward form by obtaining a decomposition LU = W, and obtain

Uy=L"'a (5.11)
t N—t
Z U—t+N+1,—t+N+j+1 Yy = Z L—t+N+1,—t+N+1—j at+j)
§=0 §=0
t=0,1,....N

where L;; is the element in the (¢, s) position of L, and similarly for U.

The left side of equation (5.11) is the “feedback” part of the optimal control law for y,, while the right-hand side is the
“feedforward” part.

We note that there is a different control law for each .

Thus, in the finite horizon case, the optimal control law is time-dependent.

76 Chapter 5. Classical Control with Linear Algebra

Tools and Techniques for Computational Economics

It is natural to suspect that as N — oo, (5.11) becomes equivalent to the solution of our infinite horizon problem, which
below we shall show can be expressed as

c(L)y, = c(BL™) ay,
so that as N — oo we expect that for each fixed ¢, Uy, L ; — ¢;and Ly, ; approaches the coefficient on L7 in the
expansion of ¢(BL~1)71.
This suspicion is true under general conditions that we shall study later.

For now, we note that by creating the matrix W for large N and factoring it into the LU form, good approximations to
¢(L) and ¢(BL~1)~! can be obtained.

5.4 Infinite Horizon Limit

For the infinite horizon problem, we propose to discover first-order necessary conditions by taking the limits of (5.4) and
(5.5)as N — oo.

This approach is valid, and the limits of (5.4) and (5.5) as N approaches infinity are first-order necessary conditions for
a maximum.

However, for the infinite horizon problem with 5 < 1, the limits of (5.4) and (5.5) are, in general, not sufficient for a
maximum.

That is, the limits of (5.5) do not provide enough information uniquely to determine the solution of the Euler equation
(5.4) that maximizes (5.1).

As we shall see below, a side condition on the path of y, that together with (5.4) is sufficient for an optimum is
> B hyt < oo (5.12)
t=0

All paths that satisfy the Euler equations, except the one that we shall select below, violate this condition and, therefore,
evidently lead to (much) lower values of (5.1) than does the optimal path selected by the solution procedure below.

Consider the characteristic equation associated with the Euler equation
h+d(Bz"t)d(z) =0 (5.13)

Notice that if % is a root of equation (5.13), then so is 32 !.

Thus, the roots of (5.13) come in “[-reciprocal” pairs.

Assume that the roots of (5.13) are distinct.

Let the roots be, in descending order according to their moduli, 2, 29, ... , Z9y,-

From the reciprocal pairs property and the assumption of distinct roots, it follows that |z;| > /B for j < m and || <

VB for j > m.

It also follows that z,,, ; = 82,7 =0,1,...,m — 1.

Therefore, the characteristic polynomial on the left side of (5.13) can be expressed as
h+d(Bz)d(2) = 27 2p(2 — 21) = (2 = 2)(2 = Zppg) = (2 = 2o,)

=2"2(2 — 2)(2 — 29) - (2 — 2,,) (2 — Bzt) -+ (2 — Bz V) (2 — Ber) (5.14)

where z; is a constant.

5.4. Infinite Horizon Limit 77

Tools and Techniques for Computational Economics

In (5.14), we substitute (z — z;) = —z;(1 — 22) and (z — Bz;1) = 2(1 — £z 1) for j =1,...,m to get

h+d(8)d(z) = (<) (o)= -2) (L= =) (1= B (1= =)
Now define c(z) = 37" ¢; 2/ as
c(2) = (=122 2, P Zil) (1-— 212) (1 i) (5.15)
Notice that (5.14) can be written
htd(Bz1)d (2) = ¢ (B2 e (2) (5.16)
It is useful to write (5.15) as
() = (1= Ay 2) . (1=, 2) (5.17)
where
o= (=122 2)? A, = — i=1m

Since |z;| > /B for j = 1,...,m it follows that |\;| < 1//B forj =1,...,m.
Using (5.17), we can express the factorization (5.16) as
h+d(Bz1)d(2) = (1 — A2) -+ (1= Apz)(1 = A Bz h) (1= A, B271)

In sum, we have constructed a factorization (5.16) of the characteristic polynomial for the Euler equation in which the
zeros of ¢(z) exceed 3'/2 in modulus, and the zeros of ¢ (3z~1) are less than 3'/2 in modulus.

Using (5.16), we now write the Euler equation as
c(BLY) e(L)y, = ay
The unique solution of the Euler equation that satisfies condition (5.12) is
(L) yy =c(BL™)ay (5.18)
This can be established by using an argument paralleling that in chapter IX of [Sargent, 1987].
To exhibit the solution in a form paralleling that of [Sargent, 1987], we use (5.17) to write (5.18) as

)
Co Ay

(1—ﬂ)\1L*1)...(1_ﬁ)\mL71> (5.19)

(I=XMNL) (A=A, L)y, =

Using partial fractions, we can write the characteristic polynomial on the right side of (5.19) as

m A. =2
—JL ___ where A, := 0
— X,
;1_)\jﬂLl ’ Hi#j(_T;)
Then (5.19) can be written
1= ML) (1=, L A
(T=AL)(1=A,)yt_; 1—)\jﬁL*1at

78 Chapter 5. Classical Control with Linear Algebra

https://en.wikipedia.org/wiki/Partial_fraction_decomposition

Tools and Techniques for Computational Economics

or

(T=XNL)— (A=A Dy, = > A > (N6 ay, (5.20)
=1 k=0

S

Equation (5.20) expresses the optimum sequence for y, in terms of m lagged y’s, and m weighted infinite geometric sums
of future a,’s.

Furthermore, (5.20) is the unique solution of the Euler equation that satisfies the initial conditions and condition (5.12).
In effect, condition (5.12) compels us to solve the “unstable” roots of h + d(3z~1)d(z) forward (see [Sargent, 1987]).

The step of factoring the polynomial h + d(B8z~ 1) d(z) into ¢ (327 1)c (z), where the zeros of ¢ (z) all have modulus
exceeding +/f3, is central to solving the problem.

We note two features of the solution (5.20)
* Since |\;] < 1/+/B for all j, it follows that (X; 8) < v/B.

* The assumption that {a, } is of exponential order less than 1/+/ is sufficient to guarantee that the geometric sums
of future a,’s on the right side of (5.20) converge.

We immediately see that those sums will converge under the weaker condition that {a, } is of exponential order less than
¢! where ¢ = max {8\;,i =1,...,m}.

Note that with a, identically zero, (5.20) implies that in general |y,| eventually grows exponentially at a rate given by
max; |\;|.

The condition max; |);| < 1/+// guarantees that condition (5.12) is satisfied.
In fact, max; |\;| < 1/4/8 is a necessary condition for (5.12) to hold.
Were (5.12) not satisfied, the objective function would diverge to —oo, implying that the ¥, path could not be optimal.

For example, with a, = 0, for all ¢, it is easy to describe a naive (nonoptimal) policy for {y,,t > 0} that gives a finite
value of (5.17).

We can simply let y, = 0 for ¢ > 0.
This policy involves at most m nonzero values of hy? and [d(L)y,]?, and so yields a finite value of (5.1).

Therefore it is easy to dominate a path that violates (5.12).

5.5 Undiscounted Problems

It is worthwhile focusing on a special case of the LQ problems above: the undiscounted problem that emerges when
B8 =1.
In this case, the Euler equation is

(h+d(L1d(L))y, = a,

The factorization of the characteristic polynomial (5.16) becomes

(h n d(xl)d(z)) —c(zYe(2)

5.5. Undiscounted Problems 79

Tools and Techniques for Computational Economics

where
c(z) =co(1—=Az)...(1—=A,,2)
cop = [(—1)’”2021 e Zp,
Nl <1forj=1,..,m
1
—forj=1,....m
%
Zy = constant

A

The solution of the problem becomes

(1=MNL) (=X, L)y, =Y A;Y Ma,,,
j=1 k=0

5.5.1 Transforming Discounted to Undiscounted Problem

Discounted problems can always be converted into undiscounted problems via a simple transformation.
Consider problem (5.1) with 0 < 5 < 1.
Define the transformed variables
a, = B%ay, §, = B%y, (5.21)
Then notice that 8 [d (L)y,|* = [d (L)§,]? withd (L) = 37" d,; L7 and d; = 37/%d,.

Then the original criterion function (5.1) is equivalent to

N
1 1 -~
li a, i, — =hiy? — =[d(L)y,)? 5.22
Ngnoo;{atyt B Yi 2[(L))%} ()
which is to be maximized over sequences {g,, t = 0,...} subject to §_,,-,§_,, given and {a,, ¢ = 1,...} a known

bounded sequence.
The Euler equation for this problem is [h + d (L) d (L)] §, = a,.

The solution is

J=1 k=0
or
~ ~ m ~ S ~
Go=Fba ot Fnbem+ DAY Moy, (5.23)
j=1 k=0

where & (z71)& (z) = h+d (2~ 1)d (), and where

(1) 205, o 5] 2= Ry 2) o (1= A, 2) = E(2), where [A,] < 1

m

We leave it to the reader to show that (5.23) implies the equivalent form of the solution
Ye=Frver t o+ fYm + ZAj Z (N B)F ayyy,
j=1 k=0
where
fi= 579 A=Ay 0 =X, (5.24)

The transformations (5.21) and the inverse formulas (5.24) allow us to solve a discounted problem by first solving a related
undiscounted problem.

80 Chapter 5. Classical Control with Linear Algebra

Tools and Techniques for Computational Economics

5.6 Implementation

Here’s the code that computes solutions to the LQ problem using the methods described above.
import numpy as np

import scipy.stats as spst

import scipy.linalg as la

class LQFilter:

def _ init_ (self, d, h, y_m, r=None, h_eps=None, B=None):

mn

Parameters
d : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [d_0, d 1, ..., d_m]
h : scalar

Parameter of the objective function (corresponding to the
quadratic term)

y.m : list or numpy.array (1-D or a 2-D column vector)
Initial conditions for y

r : list or numpy.array (1-D or a 2-D column vector)

The order of the coefficients: [r 0, r_1, ..., r_k]
(optional, if not defined —-> deterministic problem)
B : scalar

Discount factor (optional, default value 1is one)
mrrnmn

self.h h
self.d np.asarray (d)
self.m = self.d.shape[0] - 1

self.y_m = np.asarray (y_m)

if self.m == self.y_m.shape[0]:
self.y_m = self.y_m.reshape(self.m, 1)
else:
raise ValueError ("y_m must be of length m = {self.m:d}")

Define the coefficients of ¢ upfront
,,,
® = np.zeros(2 * self.m + 1)
for i in range (- self.m, self.m + 1):

d[self.m — 1] = np.sum(np.diag(self.d.reshape(self.m + 1, 1) \
@ self.d.reshape(l, self.m + 1),

k=-1
)
)

d[self.m] = d[self.m] + self.h
self.d = @
,,,
If r is given calculate the vector ¢_r
b

if r is None:

(continues on next page)

5.6. Implementation 81

Tools and Techniques for Computational Economics

def

(continued from previous page)

pass
else:
self.r = np.asarray(r)
self.k = self.r.shape[0] - 1
¢_r = np.zeros(2 * self.k + 1)
for i in range (- self.k, self.k + 1):

¢_r[self.k - i] = np.sum(np.diag(self.r.reshape(self.k + 1, 1) \
@ self.r.reshape(l, self.k + 1),
k=-1

)

if h_eps is None:
self.o_r = ¢_r

else:
b_r[self.k]
self.o_r = ¢_r

o_r[self.k] + h_eps

,,,
If B is given, define the transformed variables
,,,
if B is None:

self.p =1
else:

self.p =B

self.d = self.B** (np.arange (self.m + 1)/2) * self.d

self.y_m = self.y_.m * (self.B** (- np.arange(l, self.m + 1)/2)) \
.reshape (self.m, 1)

construct_W_and_Wm(self, N):

mrn

This constructs the matrices W and W_m for a given number of periods N

mrn

m = self.m
d = self.d

W = np.zeros((N + 1, N + 1))
W_m = np.zeros((N + 1, m))

777777777777777777777777777777777777777
Terminal conditions

777777777777777777777777777777777777777
D_ml = np.zeros((m + 1, m + 1))

M = np.zeros((m + 1, m))
(1) Constuct the D_{m+l1} matrix using the formula
for j in range(m + 1):

for k in range(j, m + 1):

D.ml[j, k] = d[:3 + 1] @ d[k - j: k + 1]

Make the matrix symmetric
D ml =D _ml + Dml.T - np.diag(np.diag(D_ml))

(2) Construct the M matrix using the entries of D_ml

(continues on next page)

82

Chapter 5. Classical Control with Linear Algebra

Tools and Techniques for Computational Economics

(continued from previous page)

for j in range (m):
for i in range(j + 1, m + 1):

M[i, j] = D_ml1[i - 3 — 1, m]
__
Euler equations for t = 0, 1, , N—(m+1)
,,
® = self.d

W[i:(m + 1), :(m + 1)] = D_ml + self.h * np.eye(m + 1)
W[i:(m + 1), (m + 1):(2 *m + 1)] =M

for i, row in enumerate (np.arange(m + 1, N + 1 — m)):

Wlrow, (i + 1):(2 *m + 2 + 1)] = ¢
for i in range(l, m + 1):

WIN-m+ i, = (2 *m + 1 — i):] = ¢o[:-1]
for i in range (m):

W_m[N - i, :(m - 1)] = o[(m + 1 + 1i):]

return W, W_m

def roots_of_characteristic(self):
mrrmn
This function calculates z_0 and the 2m roots of the characteristic
equation associated with the Euler equation (1.7)

numpy.polyld(roots, True) defines a polynomial using its roots that can

be evaluated at any point. If x_ 1, x 2, ... , X_m are the roots then
p(x) = (x — x_ 1) (x - x 2)...(x — x_m)

mrrmn

m = self.m

¢ = self.od

Calculate the roots of the 2Zm-polynomial

roots = np.roots (d)

Sort the roots according to their length (in descending order)
roots_sorted = roots[np.argsort (abs(roots)) [::-1]]

z_0 = ¢.sum() / np.polyld(roots, True) (1)

z_1_to_m = roots_sorted[:m] # We need only those outside the unit circle

A=1/ z_1 to_m
return z_1_to_m, z_0, A

def coeffs_of_c(self):

rro

This function computes the coefficients {c_j, 7 =0, 1, ..., m} for
c(z) = sum_{j = 0}"{m} c_j z"j

Based on the expression (1.9). The order 1is

(continues on next page)

5.6. Implementation 83

Tools and Techniques for Computational Economics

(continued from previous page)

c_coeffs = [¢c 0, c_1, ..., c_{m-1}, c_m]
rri
z_1_to_m, z_0 = self.roots_of_characteristic() [:2]
c_0 = (z_0 * np.prod(z_1_to_m).real * (- 1)**self.m)**(.5)

c_coeffs = np.polyld(z_1_to_m, True).c * z_0 / c_0
return c_coeffs[::-1]

def solution(self):

mrn

This function calculates {A_j, j=1,...,m} and {A_7j, j=1,...,m}
of the expression (1.15)

mrn

A = self.roots_of_characteristic() [2]
c_0 = self.coeffs_of_c()[-1]

A = np.zeros(self.m, dtype=complex)
for j in range(self.m):
denom = 1 - A/A[J]
A[Jj] = c_0**(-2) / np.prod(denom[np.arange (self.m) != 1)

return A, A

def construct_V(self, N):

rro

This function constructs the covariance matrix for x"N (see section 6)

for a given period N
rrir

V = np.zeros ((N, N))
b_r = self.o_r

for i in range(N) :
for j in range(N):
if abs(i-j) <= self.k:
Vii, j] = ¢o_r[self.k + abs(i-j)]

return V

def simulate_a(self, N):

mrn

Assuming that the u's are normal, this method draws a random path
for x”N

mrn

V = self.construct_V(N + 1)
d = spst.multivariate_normal (np.zeros (N + 1), V)

return d.rvs ()

def predict(self, a_hist, t):

min

This function implements the prediction formula discussed in section 6 (1.59)
It takes a realization for a”N, and the period in which the prediction is
formed

Output: E[abar | a_t, a_{t-1}, ..., a_1l, a_0]

(continues on next page)

84 Chapter 5. Classical Control with Linear Algebra

Tools and Techniques for Computational Economics

(continued from previous page)

mn

N = np.asarray(a_hist) .shape[0] - 1
a_hist = np.asarray(a_hist).reshape(N + 1, 1)
V = self.construct_V(N + 1)

aux_matrix = np.zeros((N + 1, N + 1))

aux_matrix[:(t + 1), :(t + 1)] = np.eye(t + 1)
L = la.cholesky (V).T
Ea_hist = la.inv (L) @ aux_matrix @ L @ a_hist

return Ea_hist

def optimal_y(self, a_hist, t=None):
wn
- 1f t is NOT given it takes a_hist (list or numpy.array) as a
deterministic a_t
- if t is given, it solves the combined control prediction problem
(section 7) (by default, t == None —-> deterministic)

for a given sequence of a_t (either deterministic or a particular
realization), it calculates the optimal y_t sequence using the method
of the lecture

scipy.linalg.lu normalizes L, U so that L has unit diagonal elements
To make things consistent with the lecture, we need an auxiliary
diagonal matrix D which renormalizes L and U

mrn

N = np.asarray(a_hist) .shape[0] - 1
W, W_m = self.construct_W_and_Wm (N)

, U= la.lu(W, permute_l=True)
= np.diag(l / np.diag(U))
=DQ@Q@U

L @ np.diag(l / np.diag(D))

2 & & &
|

J = np.fliplr(np.eye(N + 1))

if t is None: # If the problem is deterministic

a_hist = J @ np.asarray(a_hist) .reshape(N + 1, 1)

,,
Transform the 'a' sequence if B is given
,,
if self.pB != 1:
a_hist = a_hist * (self.pB**(np.arange(N + 1) / 2))[::-11 \
.reshape(N + 1, 1)
a_bar = a_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve (L, a_bar) # U @ y bar = L"{-1}
y_bar = np.linalg.solve (U, Uy) # y_bar = UMN-1}L"{-1}

(continues on next page)

5.6. Implementation 85

Tools and Techniques for Computational Economics

(continued from previous page)

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))

y_hist : concatenated y_m and y_bar

y_hist = J @ np.vstack([y_bar, self.y_m])

__

Transform the optimal sequence back if B is given
,,

if self.p != 1:

y_hist = y_hist * (self.pB** (- np.arange(-self.m, N + 1)/2)) \
.reshape (N + 1 + self.m, 1)

return y_hist, L, U, y_bar
else: # If the problem is stochastic and we look at it

Ea_hist = self.predict(a_hist, t).reshape(N + 1, 1)
Ea_hist = J @ Ea_hist

a_bar = Ea_hist - W.m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y bar = L"{-1}
y_bar = np.linalg.solve (U, Uy) # yv_bar = UN-1}L"{-1}

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))

y_hist : concatenated y_m and y_bar

y_hist = J @ np.vstack([y_bar, self.y_m])

return y_hist, L, U, y_bar

5.6.1 Example
In this application, we’ll have one lag, with

d(L)y, =v(I — L)y, = v(ys — Y1)

Suppose for the moment that v = 0.

Then the intertemporal component of the LQ problem disappears, and the agent simply wants to maximize a,y, — hy; /2
in each period.

This means that the agent chooses y, = a,/h.

In the following we'll set h = 1, so that the agent just wants to track the {a,} process.
However, as we increase v, the agent gives greater weight to a smooth time path.
Hence {y, } evolves as a smoothed version of {a,}.

The {a,} sequence we'll choose as a stationary cyclic process plus some white noise.

Here’s some code that generates a plot when v = 0.8

Set seed and generate a_t sequence
np.random.seed (123)
n = 100

(continues on next page)

86 Chapter 5. Classical Control with Linear Algebra

Tools and Techniques for Computational Economics

(continued from previous page)

a_seq = np.sin(np.linspace(0, 5 * np.pi, n)) + 2 + 0.1 * np.random.randn (n)

def plot_simulation(y=0.8, m=1, h=1, y_m=2):

d = vy * np.asarray ([1, -1])

y_m = np.asarray(y_m) .reshape(m, 1)
testlg = LQFilter(d, h, y_m)

y_hist, L, U, y = testlg.optimal_y (a_seq)
y = yl::-1] # Reverse y

Plot simulation results
fig, ax = plt.subplots(figsize=(10, 6))

p_args = {'lw' : 2, 'alpha' : 0.6}
time = range(len(y))

ax.plot (time, a_seq / h, 'k-o', ms=4, lw=2, alpha=0.6,
ax.plot (time, y, 'b-o', ms=4, lw=2, alpha=0.6, label='Sy_t$')

ax.set (title=rf'Dynamics with $\gamma = {y}$',
xlabel="Time"',
x1im=(0, max(time))
)

ax.legend()

ax.grid()

plt.show ()

plot_simulation ()

Dynamics with y=0.8

label="'Sa_ts$")

Time

Here’s what happens when we change v to 5.0

5.6. Implementation

87

Tools and Techniques for Computational Economics

plot_simulation (y=5)

Dynamics with y=5

3.0 1
2.5 1
2.0 4
1.5 ~
1.0 ~
e gt
i 4
T T T T
0 20 40 60 80

And here’s v = 10

plot_simulation (y=10)

Time

88

Chapter 5. Classical Control with Linear Algebra

Tools and Techniques for Computational Economics

Dynamics with y =10

3.0 A
2.5 1
2.0 4
1.5 4
1.0 ~
—— gt
i 4
T T T T
0 20 40 60 80

Time

5.7 Exercises

Exercise 5.7.1

Consider solving a discounted version (8 < 1) of problem (5.1), as follows.
Convert (5.1) to the undiscounted problem (5.22).

Let the solution of (5.22) in feedback form be

(1—=XL) - (1—=X\,L)j, = Z i) Nk,

J=1 k=0
or
G = Jilioa o Fonem + DAY My (5.25)
j=1 k=0
Here
« h+d(z71)d(2) = E(z71)é(z)
o &(z) = (1) 5, B V2 (1 = Ay2) (1= A,,2)
where the Z; are the zeros of h + d(z"1)d(z).
Prove that (5.25) implies that the solution for ¥, in feedback form is
Ye=F1Yer+ ot flem + ZAj Z BFNsay
j=1 k=0
5.7. Exercises 89

Tools and Techniques for Computational Economics

where f] = f_y/Bij/Q,Aj = /:i‘], and A] = ,}\ljﬂil/Q.

Exercise 5.7.2

Solve the optimal control problem, maximize

2 1
; {atyt - 5[(1 - 2L)yt]2}

subject to y_ given, and {a, } a known bounded sequence.
Express the solution in the “feedback form” (5.20), giving numerical values for the coefficients.

Make sure that the boundary conditions (5.5) are satisfied.

Note: This problem differs from the problem in the text in one important way: instead of h > 0in (5.1), A = 0. This
has an important influence on the solution.

Exercise 5.7.3
Solve the infinite time-optimal control problem to maximize

N
lim —
N—oo ot

[(1—2L)y,]?,

DN | =

subject to y_; given. Prove that the solution is

Yy =2y, 1 =2y t>0

Exercise 5.7.4
Solve the infinite time problem, to maximize
N 1
lim (.0000001) yf — 5[(1 — 2L)yt]2

N—oo 0

subject to y_; given. Prove that the solution y, = 2y, _; violates condition (5.12), and so is not optimal.

Prove that the optimal solution is approximately y, = .5y,_;.

90 Chapter 5. Classical Control with Linear Algebra

CHAPTER
SIX

CLASSICAL PREDICTION AND FILTERING WITH LINEAR ALGEBRA

6.1 Overview

This is a sequel to the earlier lecture Classical Control with Linear Algebra.

That lecture used linear algebra — in particular, the LU decomposition — to formulate and solve a class of linear-quadratic
optimal control problems.

In this lecture, we’ll be using a closely related decomposition, the Cholesky decomposition, to solve linear prediction and
filtering problems.

We exploit the useful fact that there is an intimate connection between two superficially different classes of problems:
* deterministic linear-quadratic (LQ) optimal control problems
* linear least squares prediction and filtering problems
The first class of problems involves no randomness, while the second is all about randomness.
Nevertheless, essentially the same mathematics solves both types of problem.
This connection, which is often termed “duality,” is present whether one uses “classical” or “recursive” solution procedures.

In fact, we saw duality at work earlier when we formulated control and prediction problems recursively in lectures LQ
dynamic programming problems, A first look at the Kalman filter, and The permanent income model.

A useful consequence of duality is that
* With every LQ control problem, there is implicitly affiliated a linear least squares prediction or filtering problem.
e With every linear least squares prediction or filtering problem there is implicitly affiliated a LQ control problem.
An understanding of these connections has repeatedly proved useful in cracking interesting applied problems.

For example, Sargent [Sargent, 1987] [chs. IX, XIV] and Hansen and Sargent [Hansen and Sargent, 1980] formulated
and solved control and filtering problems using z-transform methods.

In this lecture, we begin to investigate these ideas by using mostly elementary linear algebra.
This is the main purpose and focus of the lecture.

However, after showing matrix algebra formulas, we’ll summarize classic infinite-horizon formulas built on z-transform
and lag operator methods.

And we’ll occasionally refer to some of these formulas from the infinite dimensional problems as we present the finite
time formulas and associated linear algebra.

We'll start with the following standard import:

91

https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/Cholesky_decomposition
https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/kalman.html
https://python-intro.quantecon.org/perm_income.html

Tools and Techniques for Computational Economics

import numpy as np

6.1.1 References

Useful references include [Whittle, 1963], [Hansen and Sargent, 1980], [Orfanidis, 1988], [Athanasios and Pillai, 1991],
and [Muth, 1960].

6.2 Finite Dimensional Prediction

Let (1, Zq,...,xp) = x beaT x 1 vector of random variables with mean Ex = 0 and covariance matrix Exz’ = V.
Here V isa T x T positive definite matrix.
The 7, j component Ex;z; of V' is the inner product between z; and z ;.

We regard the random variables as being ordered in time so that x, is thought of as the value of some economic variable
at time ¢.

For example, x, could be generated by the random process described by the Wold representation presented in equation
(6.16) in the section below on infinite dimensional prediction and filtering.

In that case, V;; is given by the coefficient on 21*=3l in the expansion of g,(2) = d(z)d(z') + h, which equals h +
2o Tl

We want to construct j step ahead linear least squares predictors of the form
2 [$T|IT—]'7 LTr_jy1s - ,171]

where [is the linear least squares projection operator.
(Sometimes [is called the wide-sense expectations operator)

To find linear least squares predictors it is helpful first to construct a 7' x 1 vector € of random variables that form an
orthonormal basis for the vector of random variables x.

The key insight here comes from noting that because the covariance matrix V' of x is a positive definite and symmetric,
there exists a (Cholesky) decomposition of V' such that

V= Lil(Lfl)’
and
LVEL =1

where L and L~! are both lower triangular.

Form the T' x 1 random vector € = Lzx.

The random vector ¢ is an orthonormal basis for x because
* L is nonsingular
e Eee’ = LExx’L =1

o x=L"1¢

92 Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

It is enlightening to write out and interpret the equations Lz = ¢ and L™ 'ec = z.

First, we’ll write Lz = ¢

Ly, =¢
Lyixq + Logxy =€
2171 22 2 2 6.1)
Lyyxy .. + Lyppxp =€
or
-1
> Ly gz =, t=1,2..T 6.2)
3=0
Next, we write L™ 'e = z
zy = Lije
zy = Lyjey + Lajey 63)
op = Lyper + Lylp_ier - + Ly
or
-1
T, = L;tl_j €1 (6.4)
7=0
where L} denotes the 7, j element of L',
From (6.2), it follows that ¢, is in the linear subspace spanned by ;, z;_1, ..., .
From (6.4) it follows that that x, is in the linear subspace spanned by €,, €,_1, ..., €;.

Equation (6.2) forms a sequence of autoregressions that for ¢ = 1,...,7T express z, as linear functions of z_,s =
1,...,t — 1 and a random variable (Lt,t)_let that is orthogonal to each componenentof z,s =1,...,t — 1.

(Here (L, ;)" denotes the reciprocal of L, , while L;} denotes the ¢, ¢ element of L™").

The equivalence of the subspaces spanned by ¢;, ..., e; and ;, ..., z; means thatfort —1 >m > 1

[E[xt | Lims Temm—15 - 53:1] = [E[xt ‘ €t—m>Et—m—15 - ’51] (6.5)

To proceed, it is useful to drill down and note that for ¢t — 1 > m > 1 we can rewrite (6.4) in the form of the moving
average representation

m— t—1

Z tt—]EtJ+ZLtt7 - (6.6)

7=0

Representation (6.6) is an orthogonal decomposition of into a part Z Lt_ t—; € thatlies in the space spanned by
(%> T4_ms1s - »Lq) and an orthogonal component Z Lt . ;€4 that does not lie in that space but instead in a
linear space knowns as its orthogonal complement.

It follows that

m—1

Elzy [T4 s Ty 1y @ Lt t—j €
Jj=0

6.2. Finite Dimensional Prediction 93

Tools and Techniques for Computational Economics

6.2.1 Implementation

Here’s the code that computes solutions to LQ control and filtering problems using the methods described here and in
Classical Control with Linear Algebra.

import numpy as np
import scipy.stats as spst
import scipy.linalg as la

class LQFilter:

def _ _init__ (self, d, h, y_m, r=None, h_eps=None, B=None) :

mrn

Parameters

d : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [d_0, d_1, ..., d_m]

h : scalar
Parameter of the objective function (corresponding to the
quadratic term)

y.m : list or numpy.array (1-D or a 2-D column vector)
Initial conditions for y

r : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [r_0, r 1, ..., r_k]
(optional, if not defined —-> deterministic problem)
B : scalar

Discount factor (optional, default value is one)

mrn

self.h = h
self.d = np.asarray(d)
self.m self.d.shape[0] - 1

self.y_m = np.asarray (y_m)

if self.m == self.y_m.shapel0]:
self.y_m = self.y_m.reshape(self.m, 1)
else:
raise ValueError ("y_m must be of length m = {self.m
,,,
Define the coefficients of ¢ upfront
,,,
® = np.zeros(2 * self.m + 1)
for i in range (- self.m, self.m + 1):
d[self.m - 1] = np.sum(np.diag(self.d.reshape(self.m + 1, 1) \
@ self.d.reshape(l, self.m + 1),
k=-1
)
)
d[self.m] = d[self.m] + self.h
self.d = ¢

If r is given calculate the vector ¢_r

(continues on next page)

94 Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

(continued from previous page)

if r is None:

pass

else:
self.r = np.asarray(r)
self.k = self.r.shape[0] - 1

¢_r = np.zeros (2 * self.k + 1)
for i in range (- self.k, self.k + 1):

¢_r[self.k - i] = np.sum(np.diag(self.r.reshape(self.k + 1, 1) \
@ self.r.reshape(l, self.k + 1),
k=-1

)

if h_eps is None:
self.p_r = ¢_r

else:
¢o_r[self.k] = ¢o_r[self.k] + h_eps
self.p_r = ¢_r

If B is given, define the transformed variables

if B is None:
self.p =1
else:
self.p =B
self.d = self.B** (np.arange(self.m + 1)/2) * self.d
self.y_ m = self.y_ m * (self.B** (- np.arange(l, self.m + 1)/2)) \
.reshape (self.m, 1)

def construct_W_and_Wm(self, N):

mrn

This constructs the matrices W and W_m for a given number of periods N

mrn

m = self.m
d = self.d

W = np.zeros((N + 1, N + 1))
W

m = np.zeros((N + 1, m))

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Terminal conditions

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
D_ml = np.zeros((m + 1, m + 1))

M = np.zeros((m + 1, m))
(1) Constuct the D_{m+1} matrix using the formula
for j in range(m + 1):

for k in range(j, m + 1):

D_ml[j, k] = d[:35 + 1] @ d[k - j: k + 1]

Make the matrix symmetric
Dml =D_ml + D_ml.T - np.diag(np.diag(D_ml))

(continues on next page)

6.2. Finite Dimensional Prediction 95

Tools and Techniques for Computational Economics

def

def

(continued from previous page)

(2) Construct the M matrix using the entries of D_ml

for j in range (m):
for i in range(j + 1, m + 1):

M[i, j] = D_ml[i - J - 1, m]
,,
Euler equations for t = 0, 1, , N—(m+1)
e
¢ = self.od

W[i:(m + 1), :(m + 1)] = D_ml + self.h * np.eye(m + 1)
Wi:(m + 1), (m + 1):(2 *m + 1)] =M

for i, row in enumerate (np.arange(m + 1, N + 1 - m)):
Wlrow, (i + 1):(2 * m + 2 + 1)]

for i in range(l, m + 1):
WN -m+ 1, (2 *m+ 1 - i):] = ¢[:-1]

for i in range(m) :
W_m(N -1, :(m - 1i)] = ¢o[(m + 1 + 1i):]

return W, W_m

roots_of_characteristic(self):

mrn

This function calculates z_0 and the 2m roots of the characteristic
equation associated with the Euler equation (1.7)

numpy.polyld(roots, True) defines a polynomial using its roots that can
be evaluated at any point. If x_ 1, x 2, ... , X_m are the roots then
p(x) = (x — x_1)(x - x 2)...(x — x_m)

mmn

m = self.m

b = self.d

Calculate the roots of the 2m-polynomial

roots = np.roots (o)

Sort the roots according to their length (in descending order)
roots_sorted = roots[np.argsort (abs(roots)) [::-1]]

z_0 = ¢.sum() / np.polyld(roots, True) (1)

z_1_to_m = roots_sorted[:m] # We need only those outside the unit circle

A=1/ z_1 tom
return z_1_to_m, z_0, A
coeffs_of_c(self):

rro

This function computes the coefficients {c_j, j =0, 1, ..., m} for
c(z) = sum_{j = 0}"{m} c_j z"J

(continues on next page)

96

Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

(continued from previous page)

Based on the expression (1.9). The order 1is

c_coeffs = [c_ 0, c_ 1, ..., c_{m-1}, c_m]
z_1_to_m, z_0 = self.roots_of_characteristic() [:2]
c_0 = (z_0 * np.prod(z_1_to_m).real * (- 1)**self.m)**(.5)

c_coeffs = np.polyld(z_1_to_m, True).c * z_0 / c_0
return c_coeffs[::-1]

def solution(self):
This function calculates {A_3j, j=1,...,m} and {A_7j, j=1,...,m}
of the expression (1.15)
A = self.roots_of_characteristic() [2]
c_0 = self.coeffs_of_c()[-1]

A = np.zeros(self.m, dtype=complex)
for j in range(self.m):
denom = 1 - A/A[J]
A[j] = c_0**(-2) / np.prod(denom[np.arange (self.m) != j])

return A, A

def construct_V(self, N):
rr
This function constructs the covariance matrix for x"N (see section 6)
for a given period N
rr
V = np.zeros ((N, N))
¢_r = self.gp_r

for i in range (N):
for j in range (N):
if abs(i-j) <= self.k:
VI[i, j] = ¢d_r[self.k + abs(i-j)]

return V

def simulate_a(self, N):
Assuming that the u's are normal, this method draws a random path
for x”N
V = self.construct_V(N + 1)
d = spst.multivariate_normal (np.zeros (N + 1), V)

return d.rvs ()

def predict(self, a_hist, t):
mrmnn
This function implements the prediction formula discussed in section 6 (1.59)
It takes a realization for a”N, and the period in which the prediction is
formed

(continues on next page)

6.2. Finite Dimensional Prediction 97

Tools and Techniques for Computational Economics

def

(continued from previous page)
Output: E[abar | a_t, a_{t-1}, ..., a_1l, a_0]

mrn

N = np.asarray(a_hist) .shape[0] - 1
a_hist = np.asarray(a_hist) .reshape(N + 1, 1)
V = self.construct_V(N + 1)

aux_matrix = np.zeros((N + 1, N + 1))

aux_matrix[:(t + 1), :(t + 1)] = np.eye(t + 1)
L = la.cholesky (V).T
Ea_hist = la.inv (L) @ aux_matrix @ L @ a_hist

return Ea_hist

optimal_y (self, a_hist, t=None):

mrmnn

- if t is NOT given it takes a_hist (list or numpy.array) as a
deterministic a_t

- 1if t is given, it solves the combined control prediction problem
(section 7) (by default, t == None —-> deterministic)

for a given sequence of a_t (either deterministic or a particular
realization), it calculates the optimal y_t sequence using the method
of the lecture

scipy.linalg.lu normalizes L, U so that L has unit diagonal elements
To make things consistent with the lecture, we need an auxiliary

diagonal matrix D which renormalizes L and U
mrmnn

N = np.asarray(a_hist) .shape[0] - 1
W, W_m = self.construct_W_and_Wm(N)

, U= la.lu(W, permute_l=True)
= np.diag(l / np.diag(U))

=D QU

L @ np.diag(l / np.diag(D))

FE E
|

J = np.fliplr(np.eye(N + 1))
if t is None: # If the problem is deterministic

a_hist = J @ np.asarray(a_hist) .reshape(N + 1, 1)

__
Transform the 'a' sequence if B 1is given
,,
if self.p != 1:
a_hist = a_hist * (self.B**(np.arange(N + 1) / 2))[::-1]1 \
.reshape(N + 1, 1)
a_bar = a_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve (L, a_bar) # U @ y_bar = L"{-1}
y_bar = np.linalg.solve (U, Uy) # y_bar = UMN-1}L"{-1}

(continues on next page)

98

Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

(continued from previous page)

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))

y_hist : concatenated y_m and y_bar

y_hist = J @ np.vstack([y_bar, self.y_m])

,,

Transform the optimal sequence back if B is given
__

if self.p != 1:

y_hist = y_hist * (self.pB** (- np.arange(-self.m, N + 1)/2)) \
.reshape(N + 1 + self.m, 1)

return y_hist, L, U, y_bar
else: # If the problem is stochastic and we look at it

Ea_hist = self.predict(a_hist, t).reshape(N + 1, 1)
Ea_hist = J @ Ea_hist

a_bar = Ea_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve (L, a_bar) # U @ y_bar = L*"{-1}
y_bar = np.linalg.solve (U, Uy) # y_bar = UN-1}L"{-1}

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))

y_hist : concatenated y_m and y_bar

y_hist = J @ np.vstack([y_bar, self.y_m])

return y_hist, L, U, y_bar

Let’s use this code to tackle two interesting examples.

6.2.2 Example 1

Consider a stochastic process with moving average representation
z, = (1 —2L)e,
where ¢, is a serially uncorrelated random process with mean zero and variance unity.

If we were to use the tools associated with infinite dimensional prediction and filtering to be described below, we would use
the Wiener-Kolmogorov formula (6.21) to compute the linear least squares forecasts E[z,; ; | 7,z q,...], for j =1, 2.

But we can do everything we want by instead using our finite dimensional tools and setting d = r, generating an instance
of LQFilter, then invoking pertinent methods of LQFilter.

m
y_m = np.asarray([.0]) .reshape(m, 1)
d = np.asarray([1l, —-2])

r = np.asarray([1l, —-21)

h = 0.0

example = LQFilter(d, h, y_m, r=d)

The Wold representation is computed by example.coeffs_of_c ().

Let’s check that it “flips roots” as required

6.2. Finite Dimensional Prediction 99

Tools and Techniques for Computational Economics

example.coeffs_of_c()
array ([2., -1.1)
example.roots_of_characteristic()

(array([2.1), -2.0, array([0.5]))

Now let’s form the covariance matrix of a time series vector of length N and putitin V.

Then we'll take a Cholesky decomposition of V' = L~'L~! and use it to form the vector of “moving average represen-
tations” x = L~ '¢ and the vector of “autoregressive representations” Lz = €.

V = example.construct_V (N=5)
print (V)

Notice how the lower rows of the “moving average representations” are converging to the appropriate infinite history Wold
representation to be described below when we study infinite horizon-prediction and filtering

Li = np.linalg.cholesky (V)

print (Li)
[[2.23606798 0. 0. 0 0.]
[-0.89442719 2.04939015 O. 0. 0.]
[0. -0.97590007 2.01186954 0. 0.]
[0 0. -0.99410024 2.00293902 0.]
[O 0. 0. -0.99853265 2.000733 11

Notice how the lower rows of the “autoregressive representations” are converging to the appropriate infinite-history au-
toregressive representation to be described below when we study infinite horizon-prediction and filtering

L = np.linalg.inv(Li)

print (L)

[[0.4472136 O. 0. 0. 0.]
[0.19518001 0.48795004 0. 0. 0.]
[0.09467621 0.23669053 0.49705012 0. 0.]
[0.04698977 0.11747443 0.2466963 0.49926632 0.]
[0.02345182 0.05862954 0.12312203 0.24917554 0.49981682]]

100 Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

6.2.3 Example 2
Consider a stochastic process X, with moving average representation
X, =(01- \/§L2>€t

where ¢, is a serially uncorrelated random process with mean zero and variance unity.

Let’s find a Wold moving average representation for x, that will prevail in the infinite-history context to be studied in
detail below.

To do this, we'll use the Wiener-Kolomogorov formula (6.21) presented below to compute the linear least squares forecasts

E[X| X, y,..] forj=1,2,3.

We proceed in the same way as in example 1

=2
_m = np.asarray([.0, .0]).reshape(m, 1)
= np.asarray([1l, 0, -np.sgrt(2)])
= np.asarray([1l, 0, -np.sgrt(2)])
= 0.0
example = LQFilter(d, h, y_m, r=d)
example.coeffs_of_c()

oR QAN 3

array ([1.41421356, -0. p =io 1)

example.roots_of_characteristic()

(array ([1.18920712, -1.18920712]),
-1.4142135623731122,
array ([0.84089642, -0.84089642]))

V = example.construct_V (N=8)

print (V)
[[3. 0. -1.41421356 0. 0. 0.

0. 0.]

[0. 3. 0. -1.41421356 0. 0.
0. 0.]

[-1.41421356 O. 3. 0. -1.41421356 0.
0. 0.]

[0. -1.41421356 0. 3. 0. -1.41421356
0. 0.]

[0. 0. -1.41421356 0. 3. 0.

-1.41421356 0.]

[0. 0. 0. -1.41421356 0. 3.
0. -1.41421356]

[0. 0. 0. 0. -1.41421356 0.
3. 0.]

[0. 0. 0. 0. 0. -1.41421356
0. 3. 11

Li = np.linalg.cholesky (V)
print (Li[-3:, :])

6.2. Finite Dimensional Prediction 101

Tools and Techniques for Computational Economics

[[O. 0 0. -0.9258201 0. 1.46385011

0. 0.]

[O. @ @ @ -0.96609178 0.
1.43759058 O]

[O. 0. 0. 0. 0. -0.96609178
@ 1.43759058]1]

L = np.linalg.inv(Li)
print (L)
[[0.57735027 O. 0. 0. 0. 0.

0 0.]

[0 0.57735027 0. 0. 0. 0.

0. 0.]

[0.3086067 O. 0.65465367 0. @ 0.

0. 0.]

[0. 0.3086067 O. 0.65465367 0. 0.

0 0,]

[0.19518001 O. 0.41403934 0. 0.68313005 0.

0. 0.]

[0. 0.19518001 O. 0.41403934 0. 0.68313005
0. 0.]

[0.13116517 0. 0.27824334 0. 0.45907809 0.
0.69560834 0.]

[0. 0.13116517 0. 0.27824334 0. 0.45907809
0. 0.6956083417]]

6.2.4 Prediction

It immediately follows from the “orthogonality principle” of least squares (see [Athanasios and Pillai, 1991] or [Sargent,
1987] [ch. X]) that

-1
El, | 2/ s Tt mt1s - T1) = Z Ll jer;
Jj=m (67)

=[Lii Ly s Lyt 00..0]Lx

This can be interpreted as a finite-dimensional version of the Wiener-Kolmogorov m-step ahead prediction formula.

We can use (6.7) to represent the linear least squares projection of the vector = conditioned on the first s observations
[Ty, Ty q oeryq)-

We have

~ I
Elo | g2y qy.smq] = L7158 0 Lz (6.8)
0 Oy

This formula will be convenient in representing the solution of control problems under uncertainty.
Equation (6.4) can be recognized as a finite dimensional version of a moving average representation.
Equation (6.2) can be viewed as a finite dimension version of an autoregressive representation.

Notice that even if the x, process is covariance stationary, so that V' is such that V; ; depends only on |i— 7|, the coefficients
in the moving average representation are time-dependent, there being a different moving average for each ¢.

102 Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

If z, is a covariance stationary process, the last row of L~! converges to the coefficients in the Wold moving average
representation for {z,} as T — oo.

Further, if x, is covariance stationary, for fixed k and j > 0, L}}T_ , converges to L{{ ke T—k—j a8 T — 0.
That is, the “bottom” rows of L~ converge to each other and to the Wold moving average coefficients as T — oo.

This last observation gives one simple and widely-used practical way of forming a finite 7" approximation to a Wold
moving average representation.

First, form the covariance matrix Exz’ = V/, then obtain the Cholesky decomposition L YL~ of V, which can be
accomplished quickly on a computer.

The last row of L~ gives the approximate Wold moving average coefficients.

This method can readily be generalized to multivariate systems.

6.3 Combined Finite Dimensional Control and Prediction

Consider the finite-dimensional control problem, maximize

N
1 1
EY {atyt — ghwi — i[d(L)th} , h>0
t=0

where d(L) = dy + dy L + ... + d,,,L™, L is the lag operator, @ = [ay,ap_1 -.-, 01, Gp]" @ random vector with mean
zeroand Eaa’ = V.

The variables y_4, ..., y_,, are given.

Maximization is over choices of v,y ..., Y, Where y, is required to be a linear function of {y,_, ;,t +m —1 >
0; a,_4,t > s> 0}.

We saw in the lecture Classical Control with Linear Algebra that the solution of this problem under certainty could be
represented in the feedback-feedforward form

Uy=L'a+ K

for some (N + 1) x m matrix K.

Using a version of formula (6.7), we can express E[a | a,, a, ,,...,a) as
Ea|a,, a, q,...,a0) = U [O 0]ﬁ&

where I,) is the (s +1) x (s + 1) identity matrix, and V' = U0, where U is the upper triangular Cholesky factor
of the covariance matrix V.

(We have reversed the time axis in dating the a’s relative to earlier)
The time axis can be reversed in representation (6.8) by replacing L with L7
The optimal decision rule to use at time 0 < ¢ < N is then given by the (N — ¢ + 1) row of

. ~ Y
Uy=L1U"! {8 IO }U&JrK[:]
(t+1) Yom

6.3. Combined Finite Dimensional Control and Prediction 103

Tools and Techniques for Computational Economics

6.4 Infinite Horizon Prediction and Filtering Problems

It is instructive to compare the finite-horizon formulas based on linear algebra decompositions of finite-dimensional co-
variance matrices with classic formulas for infinite horizon and infinite history prediction and control problems.

These classic infinite horizon formulas used the mathematics of z-transforms and lag operators.
We'll meet interesting lag operator and z-transform counterparts to our finite horizon matrix formulas.
We pose two related prediction and filtering problems.

We let Y, be a univariate m™ order moving average, covariance stationary stochastic process,
Y, =d(L)u, (6.9)
where d(L) = Z;nzo dij , and u, is a serially uncorrelated stationary random process satisfying

Eu, =0

1 ift=s (6.10)
Euu, = .
0 otherwise

We impose no conditions on the zeros of d(z).

A second covariance stationary process is X, given by
X, =Y, +¢ (6.11)

where ¢, is a serially uncorrelated stationary random process with Ee, = 0 and Ee,e, = 0 for all distinct ¢ and s.
We also assume that Ee,u, = 0 for all ¢ and s.

The linear least squares prediction problem is to find the L, random variable Xt +; among linear combinations of

{X;, X, ,,...} that minimizes E(X,, ; — X, ;)*.

That is, the problem is to find a v;(L) = Z:io ;% L¥ such that ZZiO [vikl? < oo and E[y; (L)X, — X, ;)% is
minimized.

The linear least squares filtering problemis to finda b (L) = Z;’ZO b; L7 such that Z;’io |b;> < coand E[b (L)X, —
Y,]? is minimized.

Interesting versions of these problems related to the permanent income theory were studied by [Muth, 1960].

6.4.1 Problem Formulation

These problems are solved as follows.
The covariograms of Y and X and their cross covariogram are, respectively,
Cx(r) =EX, X, ,

Cy(r) =LEY,Y, ., T=0,+£1,4£2,... (6.12)
CY,X(T> =LY, X, ,

104 Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

The covariance and cross-covariance generating functions are defined as

gx(2) = Z Cx ()27
gy (2) = i Cy(1)z7 (6.13)

Iy x(2) = Z Cyx(7)2"

The generating functions can be computed by using the following facts.
Let v;, and v,, be two mutually and serially uncorrelated white noises with unit variances.
That is, Ev}, = Ev3, = 1, Evy, = Evg, = 0, Ev;,05, = 0 forall £ and s, Evy,vy, ; = Evgpvy, ;= 0 forall j # 0.
Let x, and y, be two random processes given by
Ye = A(L)vy, + B(L)vy
zy = C(L)vy, + D(L)vy

Then, as shown for example in [Sargent, 1987] [ch. XI], it is true that

9,(2) = A()A(=") + B(=)B(=")
0.(2) = C()C(="1) + D(=)D(=™) (6.14)
9ye(2) = AZ)C(=) + B(=)D(=)

Applying these formulas to (6.9) — (6.12), we have

gy (2) = d(2)d(z7")
gx(2) =d(2)d(z"") + h (6.15)
gyx(2) = d(z)d(z)

The key step in obtaining solutions to our problems is to factor the covariance generating function gy (z) of X.
The solutions of our problems are given by formulas due to Wiener and Kolmogorov.

These formulas utilize the Wold moving average representation of the X, process,
X, =c(L)n (6.16)
where ¢(L) = 7" ¢; L7, with
colle = X, — B[X,| X1, X, o, -] (6.17)

Here E is the linear least squares projection operator.

Equation (6.17) is the condition that c,7; can be the one-step-ahead error in predicting X, from its own past values.
Condition (6.17) requires that 7, lie in the closed linear space spanned by [X,, X, ;,...].

This will be true if and only if the zeros of ¢(z) do not lie inside the unit circle.

It is an implication of (6.17) that 7, is a serially uncorrelated random process and that normalization can be imposed so
that En? = 1.

Consequently, an implication of (6.16) is that the covariance generating function of X, can be expressed as

gx(z) =c(z)e(z) (6.18)

6.4. Infinite Horizon Prediction and Filtering Problems 105

Tools and Techniques for Computational Economics

It remains to discuss how ¢(L) is to be computed.
Combining (6.14) and (6.18) gives
dz)d(z"Y)+h=c(2)c(z71) (6.19)

Therefore, we have already shown constructively how to factor the covariance generating function g (z) = d(z) d (z71)+
h.

‘We now introduce the annihilation operator:
[Z /i Lj] =) LI (6.20)
j=—o0 L 30

In words, [], means “ignore negative powers of L”.

We have defined the solution of the prediction problem as E[X, il X Xyq,] = (L)X

Assuming that the roots of ¢(z) = 0 all lie outside the unit circle, the Wiener-Kolmogorov formula for v;(L) holds:

(L) -
5, (L) = [5 } (L) (6.21)
+
We have defined the solution of the filtering problem as E[Y; | X,, X, ;,...] = b(L)X,.

The Wiener-Kolomogorov formula for b(L) is

n = [2545w
b(L) = {%]) c(L)t (6.22)

Formulas (6.21) and (6.22) are discussed in detail in [Whittle, 1983] and [Sargent, 1987].

The interested reader can there find several examples of the use of these formulas in economics Some classic examples
using these formulas are due to [Muth, 1960].

As an example of the usefulness of formula (6.22), we let X, be a stochastic process with Wold moving average repre-
sentation

X, =c(L)n,

where E = 1, and ¢y, = X, — E[X,|X, ;] e(L) = 7 ¢ L.

Suppose that at time ¢, we wish to predict a geometric sum of future X’s, namely

given knowledge of X,, X, ,,....
‘We shall use (6.22) to obtain the answer.

Using the standard formulas (6.14), we have that

106 Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

Then (6.22) becomes
L
b(L) = [1_022_1] e(L)! (6.23)
+

In order to evaluate the term in the annihilation operator, we use the following result from [Hansen and Sargent, 1980].
Proposition Let
o0 1 o0
* g(z) = ijo g,) where ijo |gj\2 < +00.

ch(zY)=(00-062")..(1—46,z""), where |d,| < 1,forj=1,...,n.

Then
[h?f)l)L - h!(JiZ)l) -]Xn; H;Z;(jj_) 50 (Z - 5j> (6.24)

and, alternatively,
[h?ii)l)k - ;Bﬁ (W) (6.25)

where B; = 1/ Tk (1= 0/6;)-
Kt
Applying formula (6.25) of the proposition to evaluating (6.23) with g(2) = ¢(z) and h(z71) = 1 — 62! gives

b(L) = [LC(LE::;C(‘”} (1)

or

- it

Thus, we have

e 1—6c(8) L e(L)™!
E lzaaxtﬂ.p(t, xtl,...‘| - [1(_)5L71() } X, (6.26)
=0

This formula is useful in solving stochastic versions of problem 1 of lecture Classical Control with Linear Algebra in which
the randomness emerges because {a, } is a stochastic process.

The problem is to maximize

N
1 1
: ¢ 2 2
E,]\}51(1)0 tgo B {at Yy hyi — 3 [d(L)y,] (6.27)

where [, is mathematical expectation conditioned on information known at ¢, and where {a, } is a covariance stationary
stochastic process with Wold moving average representation

a, = c(L)mn,
where
e(L) = Z ;L
=0

6.4. Infinite Horizon Prediction and Filtering Problems 107

Tools and Techniques for Computational Economics

and

My = Ay — [E[atlatfla -]
The problem is to maximize (6.27) with respect to a contingency plan expressing ¥, as a function of information known
at t, which is assumed to be (y,_1, Yo, s Ay, Qp_q,---)-
The solution of this problem can be achieved in two steps.
First, ignoring the uncertainty, we can solve the problem assuming that {a, } is a known sequence.

The solution is, from above,

c(L)y, = c(BL") a,

or
(I=XMNL)...(1=A,L)y, = Z A Z(Ajﬂ)k Gyt (6.28)
=1 k=0

Second, the solution of the problem under uncertainty is obtained by replacing the terms on the right-hand side of the
above expressions with their linear least squares predictors.

Using (6.26) and (6.28), we have the following solution

(1=\L)...(1= X, L)y, = f:Aj

J=1

1— AL

1-B); c<5Aj)Llc(L)11
ay
Blaschke factors

The following is a useful piece of mathematics underlying “root flipping”.

Let m(z) = Z;nzo m;27 and let zy, ..., z;, be the zeros of 7(z) that are inside the unit circle, k < m.

— (x (z12—1) (292 —1) (22 — 1)
0(z) = ()<<z—z1>)(<z—z2>)"'<<z_zk>>

The term multiplying 7(z) is termed a “Blaschke factor”.

Then define

Then it can be proved directly that
0(z71)0(z) = m(z~)m(2)

and that the zeros of 6(z) are not inside the unit circle.

6.5 Exercises

Exercise 6.5.1

Let Y, = (1 — 2L)u, where u, is a mean zero white noise with Fu? = 1. Let
Xy =Y, +¢

where ¢, is a serially uncorrelated white noise with Fe? = 9, and Ee,u, = 0 for all ¢ and s.

108 Chapter 6. Classical Prediction and Filtering With Linear Algebra

Tools and Techniques for Computational Economics

Find the Wold moving average representation for X,.

Find a formula for the A, ;s in
o0
EXy | X0 X, =D AyX,
=0
Find a formula for the A,;’s in

EXy 1o | X Xy gy = ZAQth—j
3=0

Exercise 6.5.2
Multivariable Prediction: Let Y; be an (n x 1) vector stochastic process with moving average representation
Y, = D(L)U,
where D(L) = Z;io D;L7,D; ann x n matrix, U, an (n x 1) vector white noise with EU, = 0 for all ¢, EU, U, = 0
for all s # ¢, and EU, U/ = I for all ¢.

Let €, be an n x 1 vector white noise with mean 0 and contemporaneous covariance matrix 1, where I is a positive
definite matrix.

Let X, =Y, +¢,.
Define the covariogr