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Tools and Techniques for Computational Economics

This website presents a set of lectures on the tools and techniques required to study computational economics.
• Linear Algebra
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– Singular Value Decomposition (SVD)
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CHAPTER

ONE

LINEAR ALGEBRA

1.1 Overview

Linear algebra is one of the most useful branches of applied mathematics for economists to invest in.
For example, many applied problems in economics and finance require the solution of a linear system of equations, such
as

𝑦1 = 𝑎𝑥1 + 𝑏𝑥2
𝑦2 = 𝑐𝑥1 + 𝑑𝑥2

or, more generally,

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑘𝑥𝑘
⋮

𝑦𝑛 = 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑘𝑥𝑘

(1.1)

The objective here is to solve for the “unknowns” 𝑥1, … , 𝑥𝑘 given 𝑎11, … , 𝑎𝑛𝑘 and 𝑦1, … , 𝑦𝑛.
When considering such problems, it is essential that we first consider at least some of the following questions

• Does a solution actually exist?
• Are there in fact many solutions, and if so how should we interpret them?
• If no solution exists, is there a best “approximate” solution?
• If a solution exists, how should we compute it?

These are the kinds of topics addressed by linear algebra.
In this lecture we will cover the basics of linear and matrix algebra, treating both theory and computation.
We admit some overlap with this lecture, where operations on NumPy arrays were first explained.
Note that this lecture is more theoretical than most, and contains background material that will be used in applications as
we go along.
Let’s start with some imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from scipy.linalg import inv, solve, det, eig

5
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1.2 Vectors

A vector of length 𝑛 is just a sequence (or array, or tuple) of 𝑛 numbers, which we write as 𝑥 = (𝑥1, … , 𝑥𝑛) or 𝑥 =
[𝑥1, … , 𝑥𝑛].
We will write these sequences either horizontally or vertically as we please.
(Later, when we wish to perform certain matrix operations, it will become necessary to distinguish between the two)
The set of all 𝑛-vectors is denoted by ℝ𝑛.
For example, ℝ2 is the plane, and a vector in ℝ2 is just a point in the plane.
Traditionally, vectors are represented visually as arrows from the origin to the point.
The following figure represents three vectors in this manner

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')

ax.set(xlim=(-5, 5), ylim=(-5, 5))
ax.grid()
vecs = ((2, 4), (-3, 3), (-4, -3.5))
for v in vecs:

ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='blue',
shrink=0,
alpha=0.7,
width=0.5))

ax.text(1.1 * v[0], 1.1 * v[1], str(v))
plt.show()
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1.2.1 Vector Operations

The two most common operators for vectors are addition and scalar multiplication, which we now describe.
As a matter of definition, when we add two vectors, we add them element-by-element

𝑥 + 𝑦 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥
⎦

∶=
⎡
⎢⎢
⎣

𝑥1 + 𝑦1
𝑥2 + 𝑦2

⋮
𝑥𝑛 + 𝑦𝑛

⎤
⎥⎥
⎦

Scalar multiplication is an operation that takes a number 𝛾 and a vector 𝑥 and produces

𝛾𝑥 ∶=
⎡
⎢⎢
⎣

𝛾𝑥1
𝛾𝑥2

⋮
𝛾𝑥𝑛

⎤
⎥⎥
⎦

Scalar multiplication is illustrated in the next figure

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:

(continues on next page)
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(continued from previous page)

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')

ax.set(xlim=(-5, 5), ylim=(-5, 5))
x = (2, 2)
ax.annotate('', xy=x, xytext=(0, 0),

arrowprops=dict(facecolor='blue',
shrink=0,
alpha=1,
width=0.5))

ax.text(x[0] + 0.4, x[1] - 0.2, '$x$', fontsize='16')

scalars = (-2, 2)
x = np.array(x)

for s in scalars:
v = s * x
ax.annotate('', xy=v, xytext=(0, 0),

arrowprops=dict(facecolor='red',
shrink=0,
alpha=0.5,
width=0.5))

ax.text(v[0] + 0.4, v[1] - 0.2, f'${s} x$', fontsize='16')
plt.show()
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In Python, a vector can be represented as a list or tuple, such as x = (2, 4, 6), but is more commonly represented
as a NumPy array.
One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax

x = np.ones(3) # Vector of three ones
y = np.array((2, 4, 6)) # Converts tuple (2, 4, 6) into array
x + y

array([3., 5., 7.])

4 * x

array([4., 4., 4.])

1.2. Vectors 9
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1.2.2 Inner Product and Norm

The inner product of vectors 𝑥, 𝑦 ∈ ℝ𝑛 is defined as

𝑥′𝑦 ∶=
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖

Two vectors are called orthogonal if their inner product is zero.
The norm of a vector 𝑥 represents its “length” (i.e., its distance from the zero vector) and is defined as

‖𝑥‖ ∶=
√

𝑥′𝑥 ∶= (
𝑛

∑
𝑖=1

𝑥2
𝑖 )

1/2

The expression ‖𝑥 − 𝑦‖ is thought of as the distance between 𝑥 and 𝑦.
Continuing on from the previous example, the inner product and norm can be computed as follows

np.sum(x * y) # Inner product of x and y

12.0

np.sqrt(np.sum(x**2)) # Norm of x, take one

1.7320508075688772

np.linalg.norm(x) # Norm of x, take two

1.7320508075688772

1.2.3 Span

Given a set of vectors 𝐴 ∶= {𝑎1, … , 𝑎𝑘} in ℝ𝑛, it’s natural to think about the new vectors we can create by performing
linear operations.
New vectors created in this manner are called linear combinations of 𝐴.
In particular, 𝑦 ∈ ℝ𝑛 is a linear combination of 𝐴 ∶= {𝑎1, … , 𝑎𝑘} if

𝑦 = 𝛽1𝑎1 + ⋯ + 𝛽𝑘𝑎𝑘 for some scalars 𝛽1, … , 𝛽𝑘

In this context, the values 𝛽1, … , 𝛽𝑘 are called the coefficients of the linear combination.
The set of linear combinations of 𝐴 is called the span of 𝐴.
The next figure shows the span of 𝐴 = {𝑎1, 𝑎2} in ℝ3.
The span is a two-dimensional plane passing through these two points and the origin.

ax = plt.figure(figsize=(10, 8)).add_subplot(projection='3d')

x_min, x_max = -5, 5
y_min, y_max = -5, 5

(continues on next page)
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(continued from previous page)

α, β = 0.2, 0.1

ax.set(xlim=(x_min, x_max), ylim=(x_min, x_max), zlim=(x_min, x_max),
xticks=(0,), yticks=(0,), zticks=(0,))

gs = 3
z = np.linspace(x_min, x_max, gs)
x = np.zeros(gs)
y = np.zeros(gs)
ax.plot(x, y, z, 'k-', lw=2, alpha=0.5)
ax.plot(z, x, y, 'k-', lw=2, alpha=0.5)
ax.plot(y, z, x, 'k-', lw=2, alpha=0.5)

# Fixed linear function, to generate a plane
def f(x, y):

return α * x + β * y

# Vector locations, by coordinate
x_coords = np.array((3, 3))
y_coords = np.array((4, -4))
z = f(x_coords, y_coords)
for i in (0, 1):

ax.text(x_coords[i], y_coords[i], z[i], f'$a_{i+1}$', fontsize=14)

# Lines to vectors
for i in (0, 1):

x = (0, x_coords[i])
y = (0, y_coords[i])
z = (0, f(x_coords[i], y_coords[i]))
ax.plot(x, y, z, 'b-', lw=1.5, alpha=0.6)

# Draw the plane
grid_size = 20
xr2 = np.linspace(x_min, x_max, grid_size)
yr2 = np.linspace(y_min, y_max, grid_size)
x2, y2 = np.meshgrid(xr2, yr2)
z2 = f(x2, y2)
ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.jet,

linewidth=0, antialiased=True, alpha=0.2)
plt.show()

1.2. Vectors 11
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Examples

If 𝐴 contains only one vector 𝑎1 ∈ ℝ2, then its span is just the scalar multiples of 𝑎1, which is the unique line passing
through both 𝑎1 and the origin.
If 𝐴 = {𝑒1, 𝑒2, 𝑒3} consists of the canonical basis vectors of ℝ3, that is

𝑒1 ∶= ⎡⎢
⎣

1
0
0
⎤⎥
⎦

, 𝑒2 ∶= ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝑒3 ∶= ⎡⎢
⎣

0
0
1
⎤⎥
⎦

then the span of 𝐴 is all of ℝ3, because, for any 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, we can write

𝑥 = 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3

Now consider 𝐴0 = {𝑒1, 𝑒2, 𝑒1 + 𝑒2}.
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If 𝑦 = (𝑦1, 𝑦2, 𝑦3) is any linear combination of these vectors, then 𝑦3 = 0 (check it).
Hence 𝐴0 fails to span all of ℝ3.

1.2.4 Linear Independence

As we’ll see, it’s often desirable to find families of vectors with relatively large span, so that many vectors can be described
by linear operators on a few vectors.
The condition we need for a set of vectors to have a large span is what’s called linear independence.
In particular, a collection of vectors 𝐴 ∶= {𝑎1, … , 𝑎𝑘} in ℝ𝑛 is said to be

• linearly dependent if some strict subset of 𝐴 has the same span as 𝐴.
• linearly independent if it is not linearly dependent.

Put differently, a set of vectors is linearly independent if no vector is redundant to the span and linearly dependent
otherwise.
To illustrate the idea, recall the figure that showed the span of vectors {𝑎1, 𝑎2} in ℝ3 as a plane through the origin.
If we take a third vector 𝑎3 and form the set {𝑎1, 𝑎2, 𝑎3}, this set will be

• linearly dependent if 𝑎3 lies in the plane
• linearly independent otherwise

As another illustration of the concept, since ℝ𝑛 can be spanned by 𝑛 vectors (see the discussion of canonical basis vectors
above), any collection of 𝑚 > 𝑛 vectors in ℝ𝑛 must be linearly dependent.
The following statements are equivalent to linear independence of 𝐴 ∶= {𝑎1, … , 𝑎𝑘} ⊂ ℝ𝑛

1. No vector in 𝐴 can be formed as a linear combination of the other elements.
2. If 𝛽1𝑎1 + ⋯ 𝛽𝑘𝑎𝑘 = 0 for scalars 𝛽1, … , 𝛽𝑘, then 𝛽1 = ⋯ = 𝛽𝑘 = 0.

(The zero in the first expression is the origin of ℝ𝑛)

1.2.5 Unique Representations

Another nice thing about sets of linearly independent vectors is that each element in the span has a unique representation
as a linear combination of these vectors.
In other words, if 𝐴 ∶= {𝑎1, … , 𝑎𝑘} ⊂ ℝ𝑛 is linearly independent and

𝑦 = 𝛽1𝑎1 + ⋯ 𝛽𝑘𝑎𝑘

then no other coefficient sequence 𝛾1, … , 𝛾𝑘 will produce the same vector 𝑦.
Indeed, if we also have 𝑦 = 𝛾1𝑎1 + ⋯ 𝛾𝑘𝑎𝑘, then

(𝛽1 − 𝛾1)𝑎1 + ⋯ + (𝛽𝑘 − 𝛾𝑘)𝑎𝑘 = 0

Linear independence now implies 𝛾𝑖 = 𝛽𝑖 for all 𝑖.

1.2. Vectors 13
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1.3 Matrices

Matrices are a neat way of organizing data for use in linear operations.
An 𝑛 × 𝑘 matrix is a rectangular array 𝐴 of numbers with 𝑛 rows and 𝑘 columns:

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑘
𝑎21 𝑎22 ⋯ 𝑎2𝑘

⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑘

⎤
⎥⎥
⎦

Often, the numbers in the matrix represent coefficients in a system of linear equations, as discussed at the start of this
lecture.
For obvious reasons, the matrix 𝐴 is also called a vector if either 𝑛 = 1 or 𝑘 = 1.
In the former case, 𝐴 is called a row vector, while in the latter it is called a column vector.
If 𝑛 = 𝑘, then 𝐴 is called square.
The matrix formed by replacing 𝑎𝑖𝑗 by 𝑎𝑗𝑖 for every 𝑖 and 𝑗 is called the transpose of 𝐴 and denoted 𝐴′ or 𝐴⊤.
If 𝐴 = 𝐴′, then 𝐴 is called symmetric.
For a square matrix 𝐴, the 𝑖 elements of the form 𝑎𝑖𝑖 for 𝑖 = 1, … , 𝑛 are called the principal diagonal.
𝐴 is called diagonal if the only nonzero entries are on the principal diagonal.
If, in addition to being diagonal, each element along the principal diagonal is equal to 1, then𝐴 is called the identity matrix
and denoted by 𝐼 .

1.3.1 Matrix Operations

Just as was the case for vectors, a number of algebraic operations are defined for matrices.
Scalar multiplication and addition are immediate generalizations of the vector case:

𝛾𝐴 = 𝛾 ⎡⎢
⎣

𝑎11 ⋯ 𝑎1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑘

⎤⎥
⎦

∶= ⎡⎢
⎣

𝛾𝑎11 ⋯ 𝛾𝑎1𝑘
⋮ ⋮ ⋮

𝛾𝑎𝑛1 ⋯ 𝛾𝑎𝑛𝑘

⎤⎥
⎦

and

𝐴 + 𝐵 = ⎡⎢
⎣

𝑎11 ⋯ 𝑎1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑘

⎤⎥
⎦

+ ⎡⎢
⎣

𝑏11 ⋯ 𝑏1𝑘
⋮ ⋮ ⋮

𝑏𝑛1 ⋯ 𝑏𝑛𝑘

⎤⎥
⎦

∶= ⎡⎢
⎣

𝑎11 + 𝑏11 ⋯ 𝑎1𝑘 + 𝑏1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 + 𝑏𝑛1 ⋯ 𝑎𝑛𝑘 + 𝑏𝑛𝑘

⎤⎥
⎦

In the latter case, the matrices must have the same shape in order for the definition to make sense.
We also have a convention for multiplying two matrices.
The rule for matrix multiplication generalizes the idea of inner products discussed above and is designed to make multi-
plication play well with basic linear operations.
If 𝐴 and 𝐵 are two matrices, then their product 𝐴𝐵 is formed by taking as its 𝑖, 𝑗-th element the inner product of the 𝑖-th
row of 𝐴 and the 𝑗-th column of 𝐵.
There are many tutorials to help you visualize this operation, such as this one, or the discussion on the Wikipedia page.
If 𝐴 is 𝑛 × 𝑘 and 𝐵 is 𝑗 × 𝑚, then to multiply 𝐴 and 𝐵 we require 𝑘 = 𝑗, and the resulting matrix 𝐴𝐵 is 𝑛 × 𝑚.
As perhaps the most important special case, consider multiplying 𝑛 × 𝑘 matrix 𝐴 and 𝑘 × 1 column vector 𝑥.
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According to the preceding rule, this gives us an 𝑛 × 1 column vector

𝐴𝑥 = ⎡⎢
⎣

𝑎11 ⋯ 𝑎1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑘

⎤⎥
⎦

⎡⎢
⎣

𝑥1
⋮

𝑥𝑘

⎤⎥
⎦

∶= ⎡⎢
⎣

𝑎11𝑥1 + ⋯ + 𝑎1𝑘𝑥𝑘
⋮

𝑎𝑛1𝑥1 + ⋯ + 𝑎𝑛𝑘𝑥𝑘

⎤⎥
⎦

(1.2)

Note: 𝐴𝐵 and 𝐵𝐴 are not generally the same thing.

Another important special case is the identity matrix.
You should check that if 𝐴 is 𝑛 × 𝑘 and 𝐼 is the 𝑘 × 𝑘 identity matrix, then 𝐴𝐼 = 𝐴.
If 𝐼 is the 𝑛 × 𝑛 identity matrix, then 𝐼𝐴 = 𝐴.

1.3.2 Matrices in NumPy

NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the standard matrix oper-
ations1.
You can create them manually from tuples of tuples (or lists of lists) as follows

A = ((1, 2),
(3, 4))

type(A)

tuple

A = np.array(A)

type(A)

numpy.ndarray

A.shape

(2, 2)

The shape attribute is a tuple giving the number of rows and columns — see here for more discussion.
To get the transpose of A, use A.transpose() or, more simply, A.T.
There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) — see here.
Since operations are performed elementwise by default, scalar multiplication and addition have very natural syntax

A = np.identity(3)
B = np.ones((3, 3))
2 * A

1 Although there is a specialized matrix data type defined in NumPy, it’s more standard to work with ordinary NumPy arrays. See this discussion.
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array([[2., 0., 0.],
[0., 2., 0.],
[0., 0., 2.]])

A + B

array([[2., 1., 1.],
[1., 2., 1.],
[1., 1., 2.]])

To multiply matrices we use the @ symbol.
In particular, A @ B is matrix multiplication, whereas A * B is element-by-element multiplication.
See here for more discussion.

1.3.3 Matrices as Maps

Each 𝑛 × 𝑘 matrix 𝐴 can be identified with a function 𝑓(𝑥) = 𝐴𝑥 that maps 𝑥 ∈ ℝ𝑘 into 𝑦 = 𝐴𝑥 ∈ ℝ𝑛.
These kinds of functions have a special property: they are linear.
A function 𝑓 ∶ ℝ𝑘 → ℝ𝑛 is called linear if, for all 𝑥, 𝑦 ∈ ℝ𝑘 and all scalars 𝛼, 𝛽, we have

𝑓(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦)

You can check that this holds for the function 𝑓(𝑥) = 𝐴𝑥 + 𝑏 when 𝑏 is the zero vector and fails when 𝑏 is nonzero.
In fact, it’s known that 𝑓 is linear if and only if there exists a matrix 𝐴 such that 𝑓(𝑥) = 𝐴𝑥 for all 𝑥.

1.4 Solving Systems of Equations

Recall again the system of equations (1.1).
If we compare (1.1) and (1.2), we see that (1.1) can now be written more conveniently as

𝑦 = 𝐴𝑥 (1.3)

The problem we face is to determine a vector 𝑥 ∈ ℝ𝑘 that solves (1.3), taking 𝑦 and 𝐴 as given.
This is a special case of a more general problem: Find an 𝑥 such that 𝑦 = 𝑓(𝑥).
Given an arbitrary function 𝑓 and a 𝑦, is there always an 𝑥 such that 𝑦 = 𝑓(𝑥)?
If so, is it always unique?
The answer to both these questions is negative, as the next figure shows

def f(x):
return 0.6 * np.cos(4 * x) + 1.4

xmin, xmax = -1, 1
x = np.linspace(xmin, xmax, 160)

(continues on next page)
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(continued from previous page)

y = f(x)
ya, yb = np.min(y), np.max(y)

fig, axes = plt.subplots(2, 1, figsize=(10, 10))

for ax in axes:
# Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')

ax.set(ylim=(-0.6, 3.2), xlim=(xmin, xmax),
yticks=(), xticks=())

ax.plot(x, y, 'k-', lw=2, label='$f$')
ax.fill_between(x, ya, yb, facecolor='blue', alpha=0.05)
ax.vlines([0], ya, yb, lw=3, color='blue', label='range of $f$')
ax.text(0.04, -0.3, '$0$', fontsize=16)

ax = axes[0]

ax.legend(loc='upper right', frameon=False)
ybar = 1.5
ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)
ax.text(0.05, 0.8 * ybar, '$y$', fontsize=16)
for i, z in enumerate((-0.35, 0.35)):

ax.vlines(z, 0, f(z), linestyle='--', alpha=0.5)
ax.text(z, -0.2, f'$x_{i}$', fontsize=16)

ax = axes[1]

ybar = 2.6
ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)
ax.text(0.04, 0.91 * ybar, '$y$', fontsize=16)

plt.show()
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In the first plot, there are multiple solutions, as the function is not one-to-one, while in the second there are no solutions,
since 𝑦 lies outside the range of 𝑓 .
Can we impose conditions on 𝐴 in (1.3) that rule out these problems?
In this context, the most important thing to recognize about the expression𝐴𝑥 is that it corresponds to a linear combination
of the columns of 𝐴.
In particular, if 𝑎1, … , 𝑎𝑘 are the columns of 𝐴, then

𝐴𝑥 = 𝑥1𝑎1 + ⋯ + 𝑥𝑘𝑎𝑘

Hence the range of 𝑓(𝑥) = 𝐴𝑥 is exactly the span of the columns of 𝐴.
We want the range to be large so that it contains arbitrary 𝑦.
As you might recall, the condition that we want for the span to be large is linear independence.
A happy fact is that linear independence of the columns of 𝐴 also gives us uniqueness.
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Indeed, it follows from our earlier discussion that if {𝑎1, … , 𝑎𝑘} are linearly independent and 𝑦 = 𝐴𝑥 = 𝑥1𝑎1+⋯+𝑥𝑘𝑎𝑘,
then no 𝑧 ≠ 𝑥 satisfies 𝑦 = 𝐴𝑧.

1.4.1 The Square Matrix Case

Let’s discuss some more details, starting with the case where 𝐴 is 𝑛 × 𝑛.
This is the familiar case where the number of unknowns equals the number of equations.
For arbitrary 𝑦 ∈ ℝ𝑛, we hope to find a unique 𝑥 ∈ ℝ𝑛 such that 𝑦 = 𝐴𝑥.
In view of the observations immediately above, if the columns of 𝐴 are linearly independent, then their span, and hence
the range of 𝑓(𝑥) = 𝐴𝑥, is all of ℝ𝑛.
Hence there always exists an 𝑥 such that 𝑦 = 𝐴𝑥.
Moreover, the solution is unique.
In particular, the following are equivalent

1. The columns of 𝐴 are linearly independent.
2. For any 𝑦 ∈ ℝ𝑛, the equation 𝑦 = 𝐴𝑥 has a unique solution.

The property of having linearly independent columns is sometimes expressed as having full column rank.

Inverse Matrices

Can we give some sort of expression for the solution?
If 𝑦 and 𝐴 are scalar with 𝐴 ≠ 0, then the solution is 𝑥 = 𝐴−1𝑦.
A similar expression is available in the matrix case.
In particular, if square matrix 𝐴 has full column rank, then it possesses a multiplicative inverse matrix 𝐴−1, with the
property that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 .
As a consequence, if we pre-multiply both sides of 𝑦 = 𝐴𝑥 by 𝐴−1, we get 𝑥 = 𝐴−1𝑦.
This is the solution that we’re looking for.

Determinants

Another quick comment about square matrices is that to every such matrix we assign a unique number called the deter-
minant of the matrix — you can find the expression for it here.
If the determinant of 𝐴 is not zero, then we say that 𝐴 is nonsingular.
Perhaps the most important fact about determinants is that 𝐴 is nonsingular if and only if 𝐴 is of full column rank.
This gives us a useful one-number summary of whether or not a square matrix can be inverted.
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1.4.2 More Rows than Columns

This is the 𝑛 × 𝑘 case with 𝑛 > 𝑘.
This case is very important in many settings, not least in the setting of linear regression (where 𝑛 is the number of
observations, and 𝑘 is the number of explanatory variables).
Given arbitrary 𝑦 ∈ ℝ𝑛, we seek an 𝑥 ∈ ℝ𝑘 such that 𝑦 = 𝐴𝑥.
In this setting, the existence of a solution is highly unlikely.
Without much loss of generality, let’s go over the intuition focusing on the case where the columns of 𝐴 are linearly
independent.
It follows that the span of the columns of 𝐴 is a 𝑘-dimensional subspace of ℝ𝑛.
This span is very “unlikely” to contain arbitrary 𝑦 ∈ ℝ𝑛.
To see why, recall the figure above, where 𝑘 = 2 and 𝑛 = 3.
Imagine an arbitrarily chosen 𝑦 ∈ ℝ3, located somewhere in that three-dimensional space.
What’s the likelihood that 𝑦 lies in the span of {𝑎1, 𝑎2} (i.e., the two dimensional plane through these points)?
In a sense, it must be very small, since this plane has zero “thickness”.
As a result, in the 𝑛 > 𝑘 case we usually give up on existence.
However, we can still seek the best approximation, for example, an 𝑥 that makes the distance ‖𝑦 − 𝐴𝑥‖ as small as
possible.
To solve this problem, one can use either calculus or the theory of orthogonal projections.
The solution is known to be ̂𝑥 = (𝐴′𝐴)−1𝐴′𝑦 — see for example chapter 3 of these notes.

1.4.3 More Columns than Rows

This is the 𝑛 × 𝑘 case with 𝑛 < 𝑘, so there are fewer equations than unknowns.
In this case there are either no solutions or infinitely many — in other words, uniqueness never holds.
For example, consider the case where 𝑘 = 3 and 𝑛 = 2.
Thus, the columns of 𝐴 consists of 3 vectors in ℝ2.
This set can never be linearly independent, since it is possible to find two vectors that span ℝ2.
(For example, use the canonical basis vectors)
It follows that one column is a linear combination of the other two.
For example, let’s say that 𝑎1 = 𝛼𝑎2 + 𝛽𝑎3.
Then if 𝑦 = 𝐴𝑥 = 𝑥1𝑎1 + 𝑥2𝑎2 + 𝑥3𝑎3, we can also write

𝑦 = 𝑥1(𝛼𝑎2 + 𝛽𝑎3) + 𝑥2𝑎2 + 𝑥3𝑎3 = (𝑥1𝛼 + 𝑥2)𝑎2 + (𝑥1𝛽 + 𝑥3)𝑎3

In other words, uniqueness fails.
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1.4.4 Linear Equations with SciPy

Here’s an illustration of how to solve linear equations with SciPy’s linalg submodule.
All of these routines are Python front ends to time-tested and highly optimized FORTRAN code

A = ((1, 2), (3, 4))
A = np.array(A)
y = np.ones((2, 1)) # Column vector
det(A) # Check that A is nonsingular, and hence invertible

-2.0

A_inv = inv(A) # Compute the inverse
A_inv

array([[-2. , 1. ],
[ 1.5, -0.5]])

x = A_inv @ y # Solution
A @ x # Should equal y

array([[1.],
[1.]])

solve(A, y) # Produces the same solution

array([[-1.],
[ 1.]])

Observe how we can solve for 𝑥 = 𝐴−1𝑦 by either via inv(A) @ y, or using solve(A, y).
The latter method uses a different algorithm (LU decomposition) that is numerically more stable, and hence should almost
always be preferred.
To obtain the least-squares solution ̂𝑥 = (𝐴′𝐴)−1𝐴′𝑦, use scipy.linalg.lstsq(A, y).

1.5 Eigenvalues and Eigenvectors

Let 𝐴 be an 𝑛 × 𝑛 square matrix.
If 𝜆 is scalar and 𝑣 is a non-zero vector in ℝ𝑛 such that

𝐴𝑣 = 𝜆𝑣

then we say that 𝜆 is an eigenvalue of 𝐴, and 𝑣 is an eigenvector.
Thus, an eigenvector of 𝐴 is a vector such that when the map 𝑓(𝑥) = 𝐴𝑥 is applied, 𝑣 is merely scaled.
The next figure shows two eigenvectors (blue arrows) and their images under 𝐴 (red arrows).
As expected, the image 𝐴𝑣 of each 𝑣 is just a scaled version of the original
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A = ((1, 2),
(2, 1))

A = np.array(A)
evals, evecs = eig(A)
evecs = evecs[:, 0], evecs[:, 1]

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')
ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3
ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

# Plot each eigenvector
for v in evecs:

ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='blue',
shrink=0,
alpha=0.6,
width=0.5))

# Plot the image of each eigenvector
for v in evecs:

v = A @ v
ax.annotate('', xy=v, xytext=(0, 0),

arrowprops=dict(facecolor='red',
shrink=0,
alpha=0.6,
width=0.5))

# Plot the lines they run through
x = np.linspace(xmin, xmax, 3)
for v in evecs:

a = v[1] / v[0]
ax.plot(x, a * x, 'b-', lw=0.4)

plt.show()
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The eigenvalue equation is equivalent to (𝐴 − 𝜆𝐼)𝑣 = 0, and this has a nonzero solution 𝑣 only when the columns of
𝐴 − 𝜆𝐼 are linearly dependent.
This in turn is equivalent to stating that the determinant is zero.
Hence to find all eigenvalues, we can look for 𝜆 such that the determinant of 𝐴 − 𝜆𝐼 is zero.
This problem can be expressed as one of solving for the roots of a polynomial in 𝜆 of degree 𝑛.
This in turn implies the existence of 𝑛 solutions in the complex plane, although some might be repeated.
Some nice facts about the eigenvalues of a square matrix 𝐴 are as follows

1. The determinant of 𝐴 equals the product of the eigenvalues.
2. The trace of 𝐴 (the sum of the elements on the principal diagonal) equals the sum of the eigenvalues.
3. If 𝐴 is symmetric, then all of its eigenvalues are real.
4. If 𝐴 is invertible and 𝜆1, … , 𝜆𝑛 are its eigenvalues, then the eigenvalues of 𝐴−1 are 1/𝜆1, … , 1/𝜆𝑛.

A corollary of the first statement is that a matrix is invertible if and only if all its eigenvalues are nonzero.
Using SciPy, we can solve for the eigenvalues and eigenvectors of a matrix as follows

A = ((1, 2),
(2, 1))

(continues on next page)
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(continued from previous page)

A = np.array(A)
evals, evecs = eig(A)
evals

array([ 3.+0.j, -1.+0.j])

evecs

array([[ 0.70710678, -0.70710678],
[ 0.70710678, 0.70710678]])

Note that the columns of evecs are the eigenvectors.
Since any scalar multiple of an eigenvector is an eigenvector with the same eigenvalue (check it), the eig routine normalizes
the length of each eigenvector to one.

1.5.1 Generalized Eigenvalues

It is sometimes useful to consider the generalized eigenvalue problem, which, for givenmatrices𝐴 and𝐵, seeks generalized
eigenvalues 𝜆 and eigenvectors 𝑣 such that

𝐴𝑣 = 𝜆𝐵𝑣

This can be solved in SciPy via scipy.linalg.eig(A, B).
Of course, if 𝐵 is square and invertible, then we can treat the generalized eigenvalue problem as an ordinary eigenvalue
problem 𝐵−1𝐴𝑣 = 𝜆𝑣, but this is not always the case.

1.6 Further Topics

We round out our discussion by briefly mentioning several other important topics.

1.6.1 Series Expansions

Recall the usual summation formula for a geometric progression, which states that if |𝑎| < 1, then∑∞
𝑘=0 𝑎𝑘 = (1−𝑎)−1.

A generalization of this idea exists in the matrix setting.

Matrix Norms

Let 𝐴 be a square matrix, and let

‖𝐴‖ ∶= max
‖𝑥‖=1

‖𝐴𝑥‖

The norms on the right-hand side are ordinary vector norms, while the norm on the left-hand side is a matrix norm— in
this case, the so-called spectral norm.
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For example, for a square matrix 𝑆, the condition ‖𝑆‖ < 1 means that 𝑆 is contractive, in the sense that it pulls all vectors
towards the origin2.

Neumann’s Theorem

Let 𝐴 be a square matrix and let 𝐴𝑘 ∶= 𝐴𝐴𝑘−1 with 𝐴1 ∶= 𝐴.
In other words, 𝐴𝑘 is the 𝑘-th power of 𝐴.
Neumann’s theorem states the following: If ‖𝐴𝑘‖ < 1 for some 𝑘 ∈ ℕ, then 𝐼 − 𝐴 is invertible, and

(𝐼 − 𝐴)−1 =
∞

∑
𝑘=0

𝐴𝑘 (1.4)

Spectral Radius

A result known as Gelfand’s formula tells us that, for any square matrix 𝐴,

𝜌(𝐴) = lim
𝑘→∞

‖𝐴𝑘‖1/𝑘

Here 𝜌(𝐴) is the spectral radius, defined as max𝑖 |𝜆𝑖|, where {𝜆𝑖}𝑖 is the set of eigenvalues of 𝐴.
As a consequence of Gelfand’s formula, if all eigenvalues are strictly less than one in modulus, there exists a 𝑘 with
‖𝐴𝑘‖ < 1.
In which case (1.4) is valid.

1.6.2 Positive Definite Matrices

Let 𝐴 be a symmetric 𝑛 × 𝑛 matrix.
We say that 𝐴 is

1. positive definite if 𝑥′𝐴𝑥 > 0 for every 𝑥 ∈ ℝ𝑛 {0}
2. positive semi-definite or nonnegative definite if 𝑥′𝐴𝑥 ≥ 0 for every 𝑥 ∈ ℝ𝑛

Analogous definitions exist for negative definite and negative semi-definite matrices.
It is notable that if 𝐴 is positive definite, then all of its eigenvalues are strictly positive, and hence 𝐴 is invertible (with
positive definite inverse).

1.6.3 Differentiating Linear and Quadratic Forms

The following formulas are useful in many economic contexts. Let
• 𝑧, 𝑥 and 𝑎 all be 𝑛 × 1 vectors
• 𝐴 be an 𝑛 × 𝑛 matrix
• 𝐵 be an 𝑚 × 𝑛 matrix and 𝑦 be an 𝑚 × 1 vector

Then
1. 𝜕𝑎′𝑥

𝜕𝑥 = 𝑎
2 Suppose that ‖𝑆‖ < 1. Take any nonzero vector 𝑥, and let 𝑟 ∶= ‖𝑥‖. We have ‖𝑆𝑥‖ = 𝑟‖𝑆(𝑥/𝑟)‖ ≤ 𝑟‖𝑆‖ < 𝑟 = ‖𝑥‖. Hence every point is

pulled towards the origin.
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2. 𝜕𝐴𝑥
𝜕𝑥 = 𝐴′

3. 𝜕𝑥′𝐴𝑥
𝜕𝑥 = (𝐴 + 𝐴′)𝑥

4. 𝜕𝑦′𝐵𝑧
𝜕𝑦 = 𝐵𝑧

5. 𝜕𝑦′𝐵𝑧
𝜕𝐵 = 𝑦𝑧′

Exercise 1.7.1 below asks you to apply these formulas.

1.6.4 Further Reading

The documentation of the scipy.linalg submodule can be found here.
Chapters 2 and 3 of the Econometric Theory contains a discussion of linear algebra along the same lines as above, with
solved exercises.
If you don’t mind a slightly abstract approach, a nice intermediate-level text on linear algebra is [Jänich, 1994].

1.7 Exercises

Exercise 1.7.1
Let 𝑥 be a given 𝑛 × 1 vector and consider the problem

𝑣(𝑥) = max
𝑦,𝑢

{−𝑦′𝑃𝑦 − 𝑢′𝑄𝑢}

subject to the linear constraint

𝑦 = 𝐴𝑥 + 𝐵𝑢

Here
• 𝑃 is an 𝑛 × 𝑛 matrix and 𝑄 is an 𝑚 × 𝑚 matrix
• 𝐴 is an 𝑛 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑚 matrix
• both 𝑃 and 𝑄 are symmetric and positive semidefinite

(What must the dimensions of 𝑦 and 𝑢 be to make this a well-posed problem?)
One way to solve the problem is to form the Lagrangian

ℒ = −𝑦′𝑃𝑦 − 𝑢′𝑄𝑢 + 𝜆′ [𝐴𝑥 + 𝐵𝑢 − 𝑦]

where 𝜆 is an 𝑛 × 1 vector of Lagrange multipliers.
Try applying the formulas given above for differentiating quadratic and linear forms to obtain the first-order conditions
for maximizing ℒ with respect to 𝑦, 𝑢 and minimizing it with respect to 𝜆.
Show that these conditions imply that

1. 𝜆 = −2𝑃𝑦.
2. The optimizing choice of 𝑢 satisfies 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥.
3. The function 𝑣 satisfies 𝑣(𝑥) = −𝑥′ ̃𝑃 𝑥 where ̃𝑃 = 𝐴′𝑃𝐴 − 𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴.
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As we will see, in economic contexts Lagrange multipliers often are shadow prices.

Note: If we don’t care about the Lagrange multipliers, we can substitute the constraint into the objective function, and
then just maximize −(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢 with respect to 𝑢. You can verify that this leads to the same
maximizer.

Solution to Exercise 1.7.1
We have an optimization problem:

𝑣(𝑥) = max
𝑦,𝑢

{−𝑦′𝑃𝑦 − 𝑢′𝑄𝑢}

s.t.

𝑦 = 𝐴𝑥 + 𝐵𝑢

with primitives
• 𝑃 be a symmetric and positive semidefinite 𝑛 × 𝑛 matrix
• 𝑄 be a symmetric and positive semidefinite 𝑚 × 𝑚 matrix
• 𝐴 an 𝑛 × 𝑛 matrix
• 𝐵 an 𝑛 × 𝑚 matrix

The associated Lagrangian is:

𝐿 = −𝑦′𝑃𝑦 − 𝑢′𝑄𝑢 + 𝜆′[𝐴𝑥 + 𝐵𝑢 − 𝑦]

Step 1.
Differentiating Lagrangian equation w.r.t y and setting its derivative equal to zero yields

𝜕𝐿
𝜕𝑦 = −(𝑃 + 𝑃 ′)𝑦 − 𝜆 = −2𝑃𝑦 − 𝜆 = 0 ,

since P is symmetric.
Accordingly, the first-order condition for maximizing L w.r.t. y implies

𝜆 = −2𝑃𝑦

Step 2.
Differentiating Lagrangian equation w.r.t. u and setting its derivative equal to zero yields

𝜕𝐿
𝜕𝑢 = −(𝑄 + 𝑄′)𝑢 − 𝐵′𝜆 = −2𝑄𝑢 + 𝐵′𝜆 = 0

Substituting 𝜆 = −2𝑃𝑦 gives

𝑄𝑢 + 𝐵′𝑃𝑦 = 0

Substituting the linear constraint 𝑦 = 𝐴𝑥 + 𝐵𝑢 into above equation gives

𝑄𝑢 + 𝐵′𝑃(𝐴𝑥 + 𝐵𝑢) = 0
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(𝑄 + 𝐵′𝑃𝐵)𝑢 + 𝐵′𝑃𝐴𝑥 = 0
which is the first-order condition for maximizing 𝐿 w.r.t. 𝑢.
Thus, the optimal choice of u must satisfy

𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥 ,

which follows from the definition of the first-order conditions for Lagrangian equation.
Step 3.
Rewriting our problem by substituting the constraint into the objective function, we get

𝑣(𝑥) = max
𝑢

{−(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢}

Since we know the optimal choice of u satisfies 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥, then

𝑣(𝑥) = −(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢 𝑤𝑖𝑡ℎ 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

To evaluate the function

𝑣(𝑥) = −(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢
= −(𝑥′𝐴′ + 𝑢′𝐵′)𝑃 (𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢
= −𝑥′𝐴′𝑃𝐴𝑥 − 𝑢′𝐵′𝑃𝐴𝑥 − 𝑥′𝐴′𝑃𝐵𝑢 − 𝑢′𝐵′𝑃𝐵𝑢 − 𝑢′𝑄𝑢
= −𝑥′𝐴′𝑃𝐴𝑥 − 2𝑢′𝐵′𝑃𝐴𝑥 − 𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢

For simplicity, denote by 𝑆 ∶= (𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴, then 𝑢 = −𝑆𝑥.
Regarding the second term −2𝑢′𝐵′𝑃𝐴𝑥,

−2𝑢′𝐵′𝑃𝐴𝑥 = −2𝑥′𝑆′𝐵′𝑃𝐴𝑥
= 2𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

Notice that the term (𝑄 + 𝐵′𝑃𝐵)−1 is symmetric as both P and Q are symmetric.
Regarding the third term −𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢,

−𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢 = −𝑥′𝑆′(𝑄 + 𝐵′𝑃𝐵)𝑆𝑥
= −𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

Hence, the summation of second and third terms is 𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥.
This implies that

𝑣(𝑥) = −𝑥′𝐴′𝑃𝐴𝑥 − 2𝑢′𝐵′𝑃𝐴𝑥 − 𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢
= −𝑥′𝐴′𝑃𝐴𝑥 + 𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥
= −𝑥′[𝐴′𝑃𝐴 − 𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴]𝑥

Therefore, the solution to the optimization problem 𝑣(𝑥) = −𝑥′ ̃𝑃 𝑥 follows the above result by denoting ̃𝑃 ∶= 𝐴′𝑃𝐴 −
𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴
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CHAPTER

TWO

QR DECOMPOSITION

2.1 Overview

This lecture describes the QR decomposition and how it relates to
• Orthogonal projection and least squares
• A Gram-Schmidt process
• Eigenvalues and eigenvectors

We’ll write some Python code to help consolidate our understandings.

2.2 Matrix Factorization

The QR decomposition (also called the QR factorization) of a matrix is a decomposition of a matrix into the product of
an orthogonal matrix and a triangular matrix.
A QR decomposition of a real matrix 𝐴 takes the form

𝐴 = 𝑄𝑅

where
• 𝑄 is an orthogonal matrix (so that 𝑄𝑇 𝑄 = 𝐼)
• 𝑅 is an upper triangular matrix

We’ll use a Gram-Schmidt process to compute a QR decomposition
Because doing so is so educational, we’ll write our own Python code to do the job

2.3 Gram-Schmidt process

We’ll start with a square matrix 𝐴.
If a square matrix 𝐴 is nonsingular, then a 𝑄𝑅 factorization is unique.
We’ll deal with a rectangular matrix 𝐴 later.
Actually, our algorithm will work with a rectangular 𝐴 that is not square.
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2.3.1 Gram-Schmidt process for square 𝐴

Here we apply a Gram-Schmidt process to the columns of matrix 𝐴.
In particular, let

𝐴 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑛 ]

Let || · || denote the L2 norm.
The Gram-Schmidt algorithm repeatedly combines the following two steps in a particular order

• normalize a vector to have unit norm
• orthogonalize the next vector

To begin, we set 𝑢1 = 𝑎1 and then normalize:

𝑢1 = 𝑎1, 𝑒1 = 𝑢1
||𝑢1||

We orgonalize first to compute 𝑢2 and then normalize to create 𝑒2:

𝑢2 = 𝑎2 − (𝑎2 · 𝑒1)𝑒1, 𝑒2 = 𝑢2
||𝑢2||

We invite the reader to verify that 𝑒1 is orthogonal to 𝑒2 by checking that 𝑒1 ⋅ 𝑒2 = 0.
The Gram-Schmidt procedure continues iterating.
Thus, for 𝑘 = 2, … , 𝑛 − 1 we construct

𝑢𝑘+1 = 𝑎𝑘+1 − (𝑎𝑘+1 · 𝑒1)𝑒1 − ⋯ − (𝑎𝑘+1 · 𝑒𝑘)𝑒𝑘, 𝑒𝑘+1 = 𝑢𝑘+1
||𝑢𝑘+1||

Here (𝑎𝑗 ⋅ 𝑒𝑖) can be interpreted as the linear least squares regression coefficient of 𝑎𝑗 on 𝑒𝑖

• it is the inner product of 𝑎𝑗 and 𝑒𝑖 divided by the inner product of 𝑒𝑖 where 𝑒𝑖 ⋅ 𝑒𝑖 = 1, as normalization has assured
us.

• this regression coefficient has an interpretation as being a covariance divided by a variance
It can be verified that

𝐴 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑛 ] = [ 𝑒1 𝑒2 ⋯ 𝑒𝑛 ]
⎡
⎢⎢
⎣

𝑎1 · 𝑒1 𝑎2 · 𝑒1 ⋯ 𝑎𝑛 · 𝑒1
0 𝑎2 · 𝑒2 ⋯ 𝑎𝑛 · 𝑒2
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛 · 𝑒𝑛

⎤
⎥⎥
⎦

Thus, we have constructed the decomposision

𝐴 = 𝑄𝑅

where

𝑄 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑛 ] = [ 𝑒1 𝑒2 ⋯ 𝑒𝑛 ]

and

𝑅 =
⎡
⎢⎢
⎣

𝑎1 · 𝑒1 𝑎2 · 𝑒1 ⋯ 𝑎𝑛 · 𝑒1
0 𝑎2 · 𝑒2 ⋯ 𝑎𝑛 · 𝑒2
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛 · 𝑒𝑛

⎤
⎥⎥
⎦
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2.3.2 𝐴 not square

Now suppose that 𝐴 is an 𝑛 × 𝑚 matrix where 𝑚 > 𝑛.
Then a 𝑄𝑅 decomposition is

𝐴 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑚 ] = [ 𝑒1 𝑒2 ⋯ 𝑒𝑛 ]
⎡
⎢⎢
⎣

𝑎1 · 𝑒1 𝑎2 · 𝑒1 ⋯ 𝑎𝑛 · 𝑒1 𝑎𝑛+1 ⋅ 𝑒1 ⋯ 𝑎𝑚 ⋅ 𝑒1
0 𝑎2 · 𝑒2 ⋯ 𝑎𝑛 · 𝑒2 𝑎𝑛+1 ⋅ 𝑒2 ⋯ 𝑎𝑚 ⋅ 𝑒2
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛 · 𝑒𝑛 𝑎𝑛+1 ⋅ 𝑒𝑛 ⋯ 𝑎𝑚 ⋅ 𝑒𝑛

⎤
⎥⎥
⎦

which implies that

𝑎1 = (𝑎1 ⋅ 𝑒1)𝑒1
𝑎2 = (𝑎2 ⋅ 𝑒1)𝑒1 + (𝑎2 ⋅ 𝑒2)𝑒2

⋮ ⋮
𝑎𝑛 = (𝑎𝑛 ⋅ 𝑒1)𝑒1 + (𝑎𝑛 ⋅ 𝑒2)𝑒2 + ⋯ + (𝑎𝑛 ⋅ 𝑒𝑛)𝑒𝑛

𝑎𝑛+1 = (𝑎𝑛+1 ⋅ 𝑒1)𝑒1 + (𝑎𝑛+1 ⋅ 𝑒2)𝑒2 + ⋯ + (𝑎𝑛+1 ⋅ 𝑒𝑛)𝑒𝑛
⋮ ⋮

𝑎𝑚 = (𝑎𝑚 ⋅ 𝑒1)𝑒1 + (𝑎𝑚 ⋅ 𝑒2)𝑒2 + ⋯ + (𝑎𝑚 ⋅ 𝑒𝑛)𝑒𝑛

2.4 Some Code

Now let’s write some homemade Python code to implement a QR decomposition by deploying the Gram-Schmidt process
described above.

import numpy as np
from scipy.linalg import qr

def QR_Decomposition(A):
n, m = A.shape # get the shape of A

Q = np.empty((n, n)) # initialize matrix Q
u = np.empty((n, n)) # initialize matrix u

u[:, 0] = A[:, 0]
Q[:, 0] = u[:, 0] / np.linalg.norm(u[:, 0])

for i in range(1, n):

u[:, i] = A[:, i]
for j in range(i):

u[:, i] -= (A[:, i] @ Q[:, j]) * Q[:, j] # get each u vector

Q[:, i] = u[:, i] / np.linalg.norm(u[:, i]) # compute each e vetor

R = np.zeros((n, m))
for i in range(n):

for j in range(i, m):
R[i, j] = A[:, j] @ Q[:, i]

return Q, R
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The preceding code is fine but can benefit from some further housekeeping.
We want to do this because later in this notebook we want to compare results from using our homemade code above with
the code for a QR that the Python scipy package delivers.
There can be be sign differences between the 𝑄 and 𝑅 matrices produced by different numerical algorithms.
All of these are valid QR decompositions because of how the sign differences cancel out when we compute 𝑄𝑅.
However, to make the results from our homemade function and the QR module in scipy comparable, let’s require that
𝑄 have positive diagonal entries.
We do this by adjusting the signs of the columns in 𝑄 and the rows in 𝑅 appropriately.
To accomplish this we’ll define a pair of functions.

def diag_sign(A):
"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(A)))

return D

def adjust_sign(Q, R):
"""
Adjust the signs of the columns in Q and rows in R to
impose positive diagonal of Q
"""

D = diag_sign(Q)

Q[:, :] = Q @ D
R[:, :] = D @ R

return Q, R

2.5 Example

Now let’s do an example.

A = np.array([[1.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0]])
# A = np.array([[1.0, 0.5, 0.2], [0.5, 0.5, 1.0], [0.0, 1.0, 1.0]])
# A = np.array([[1.0, 0.5, 0.2], [0.5, 0.5, 1.0]])

A

array([[1., 1., 0.],
[1., 0., 1.],
[0., 1., 1.]])

Q, R = adjust_sign(*QR_Decomposition(A))

Q
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array([[ 0.70710678, -0.40824829, -0.57735027],
[ 0.70710678, 0.40824829, 0.57735027],
[ 0. , -0.81649658, 0.57735027]])

R

array([[ 1.41421356, 0.70710678, 0.70710678],
[ 0. , -1.22474487, -0.40824829],
[ 0. , 0. , 1.15470054]])

Let’s compare outcomes with what the scipy package produces

Q_scipy, R_scipy = adjust_sign(*qr(A))

print('Our Q: \n', Q)
print('\n')
print('Scipy Q: \n', Q_scipy)

Our Q:
[[ 0.70710678 -0.40824829 -0.57735027]
[ 0.70710678 0.40824829 0.57735027]
[ 0. -0.81649658 0.57735027]]

Scipy Q:
[[ 0.70710678 -0.40824829 -0.57735027]
[ 0.70710678 0.40824829 0.57735027]
[ 0. -0.81649658 0.57735027]]

print('Our R: \n', R)
print('\n')
print('Scipy R: \n', R_scipy)

Our R:
[[ 1.41421356 0.70710678 0.70710678]
[ 0. -1.22474487 -0.40824829]
[ 0. 0. 1.15470054]]

Scipy R:
[[ 1.41421356 0.70710678 0.70710678]
[ 0. -1.22474487 -0.40824829]
[ 0. 0. 1.15470054]]

The above outcomes give us the good news that our homemade function agrees with what scipy produces.
Now let’s do a QR decomposition for a rectangular matrix 𝐴 that is 𝑛 × 𝑚 with 𝑚 > 𝑛.

A = np.array([[1, 3, 4], [2, 0, 9]])

Q, R = adjust_sign(*QR_Decomposition(A))
Q, R
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(array([[ 0.4472136 , -0.89442719],
[ 0.89442719, 0.4472136 ]]),

array([[ 2.23606798, 1.34164079, 9.8386991 ],
[ 0. , -2.68328157, 0.4472136 ]]))

Q_scipy, R_scipy = adjust_sign(*qr(A))
Q_scipy, R_scipy

(array([[ 0.4472136 , -0.89442719],
[ 0.89442719, 0.4472136 ]]),

array([[ 2.23606798, 1.34164079, 9.8386991 ],
[ 0. , -2.68328157, 0.4472136 ]]))

2.6 Using QR Decomposition to Compute Eigenvalues

Now for a useful fact about the QR algorithm.
The following iterations on the QR decomposition can be used to compute eigenvalues of a square matrix 𝐴.
Here is the algorithm:

1. Set 𝐴0 = 𝐴 and form 𝐴0 = 𝑄0𝑅0

2. Form 𝐴1 = 𝑅0𝑄0 . Note that 𝐴1 is similar to 𝐴0 (easy to verify) and so has the same eigenvalues.
3. Form 𝐴1 = 𝑄1𝑅1 (i.e., form the 𝑄𝑅 decomposition of 𝐴1).
4. Form 𝐴2 = 𝑅1𝑄1 and then 𝐴2 = 𝑄2𝑅2 .
5. Iterate to convergence.
6. Compute eigenvalues of 𝐴 and compare them to the diagonal values of the limiting 𝐴𝑛 found from this process.

Remark: this algorithm is close to one of the most efficient ways of computing eigenvalues!
Let’s write some Python code to try out the algorithm

def QR_eigvals(A, tol=1e-12, maxiter=1000):
"Find the eigenvalues of A using QR decomposition."

A_old = np.copy(A)
A_new = np.copy(A)

diff = np.inf
i = 0
while (diff > tol) and (i < maxiter):

A_old[:, :] = A_new
Q, R = QR_Decomposition(A_old)

A_new[:, :] = R @ Q

diff = np.abs(A_new - A_old).max()
i += 1

eigvals = np.diag(A_new)

return eigvals
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Now let’s try the code and compare the results with what scipy.linalg.eigvals gives us
Here goes

# experiment this with one random A matrix
A = np.random.random((3, 3))

sorted(QR_eigvals(A))

[-0.4297694064697409, -0.26958335762838337, 1.5689115427669107]

Compare with the scipy package.

sorted(np.linalg.eigvals(A))

[-0.4297694064697404, -0.2695833576283847, 1.568911542766912]

2.7 𝑄𝑅 and PCA

There are interesting connections between the 𝑄𝑅 decomposition and principal components analysis (PCA).
Here are some.

1. Let 𝑋′ be a 𝑘 × 𝑛 random matrix where the 𝑗th column is a random draw from 𝒩(𝜇, Σ) where 𝜇 is 𝑘 × 1 vector
of means and Σ is a 𝑘 × 𝑘 covariance matrix. We want 𝑛 >> 𝑘 – this is an “econometrics example”.

2. Form 𝑋′ = 𝑄𝑅 where 𝑄 is 𝑘 × 𝑘 and 𝑅 is 𝑘 × 𝑛.
3. Form the eigenvalues of 𝑅𝑅′, i.e., we’ll compute 𝑅𝑅′ = ̃𝑃Λ ̃𝑃 ′.

4. Form 𝑋′𝑋 = 𝑄 ̃𝑃Λ ̃𝑃 ′𝑄′ and compare it with the eigen decomposition 𝑋′𝑋 = 𝑃 Λ̂𝑃 ′.

5. It will turn out that that Λ = Λ̂ and that 𝑃 = 𝑄 ̃𝑃 .
Let’s verify conjecture 5 with some Python code.
Start by simulating a random (𝑛, 𝑘) matrix 𝑋.

k = 5
n = 1000

# generate some random moments
= np.random.random(size=k)

C = np.random.random((k, k))
Σ = C.T @ C

# X is random matrix where each column follows multivariate normal dist.
X = np.random.multivariate_normal( , Σ, size=n)

X.shape

(1000, 5)
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Let’s apply the QR decomposition to 𝑋′.

Q, R = adjust_sign(*QR_Decomposition(X.T))

Check the shapes of 𝑄 and 𝑅.

Q.shape, R.shape

((5, 5), (5, 1000))

Now we can construct 𝑅𝑅′ = ̃𝑃Λ ̃𝑃 ′ and form an eigen decomposition.

RR = R @ R.T

, P_tilde = np.linalg.eigh(RR)
Λ = np.diag( )

We can also apply the decomposition to 𝑋′𝑋 = 𝑃 Λ̂𝑃 ′.

XX = X.T @ X

_hat, P = np.linalg.eigh(XX)
Λ_hat = np.diag( _hat)

Compare the eigenvalues that are on the diagonals of Λ and Λ̂.

, _hat

(array([ 13.69522485, 453.32701014, 576.93233248, 754.61505888,
8872.61109916]),

array([ 13.69522485, 453.32701014, 576.93233248, 754.61505888,
8872.61109916]))

Let’s compare 𝑃 and 𝑄 ̃𝑃 .
Again we need to be careful about sign differences between the columns of 𝑃 and 𝑄 ̃𝑃 .

QP_tilde = Q @ P_tilde

np.abs(P @ diag_sign(P) - QP_tilde @ diag_sign(QP_tilde)).max()

6.8833827526759706e-15

Let’s verify that 𝑋′𝑋 can be decomposed as 𝑄 ̃𝑃Λ ̃𝑃 ′𝑄′.

QPΛPQ = Q @ P_tilde @ Λ @ P_tilde.T @ Q.T

np.abs(QPΛPQ - XX).max()

5.6843418860808015e-12
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CHAPTER

THREE

CIRCULANT MATRICES

3.1 Overview

This lecture describes circulant matrices and some of their properties.
Circulant matrices have a special structure that connects them to useful concepts including

• convolution
• Fourier transforms
• permutation matrices

Because of these connections, circulant matrices are widely used in machine learning, for example, in image processing.
We begin by importing some Python packages

import numpy as np
from numba import njit
import matplotlib.pyplot as plt

np.set_printoptions(precision=3, suppress=True)

3.2 Constructing a Circulant Matrix

To construct an 𝑁 × 𝑁 circulant matrix, we need only the first row, say,

[𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 ⋯ 𝑐𝑁−1] .

After setting entries in the first row, the remaining rows of a circulant matrix are determined as follows:

𝐶 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 ⋯ 𝑐𝑁−1
𝑐𝑁−1 𝑐0 𝑐1 𝑐2 𝑐3 ⋯ 𝑐𝑁−2
𝑐𝑁−2 𝑐𝑁−1 𝑐0 𝑐1 𝑐2 ⋯ 𝑐𝑁−3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 ⋯ 𝑐2
𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 ⋯ 𝑐1
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 ⋯ 𝑐0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.1)

It is also possible to construct a circulant matrix by creating the transpose of the above matrix, in which case only the first
column needs to be specified.
Let’s write some Python code to generate a circulant matrix.
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@njit
def construct_cirlulant(row):

N = row.size

C = np.empty((N, N))

for i in range(N):

C[i, i:] = row[:N-i]
C[i, :i] = row[N-i:]

return C

# a simple case when N = 3
construct_cirlulant(np.array([1., 2., 3.]))

array([[1., 2., 3.],
[3., 1., 2.],
[2., 3., 1.]])

3.2.1 Some Properties of Circulant Matrices

Here are some useful properties:
Suppose that 𝐴 and 𝐵 are both circulant matrices. Then it can be verified that

• The transpose of a circulant matrix is a circulant matrix.
• 𝐴 + 𝐵 is a circulant matrix
• 𝐴𝐵 is a circulant matrix
• 𝐴𝐵 = 𝐵𝐴

Now consider a circulant matrix with first row

𝑐 = [𝑐0 𝑐1 ⋯ 𝑐𝑁−1]

and consider a vector

𝑎 = [𝑎0 𝑎1 ⋯ 𝑎𝑁−1]

The convolution of vectors 𝑐 and 𝑎 is defined as the vector 𝑏 = 𝑐 ∗ 𝑎 with components

𝑏𝑘 =
𝑛−1
∑
𝑖=0

𝑐𝑘−𝑖𝑎𝑖 (3.2)

We use ∗ to denote convolution via the calculation described in equation (3.2).
It can be verified that the vector 𝑏 satisfies

𝑏 = 𝐶𝑇 𝑎

where 𝐶𝑇 is the transpose of the circulant matrix defined in equation (3.1).
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3.3 Connection to Permutation Matrix

A good way to construct a circulant matrix is to use a permutation matrix.
Before defining a permutationmatrix, we’ll define a permutation.
A permutation of a set of the set of non-negative integers {0, 1, 2, …} is a one-to-one mapping of the set into itself.
A permutation of a set {1, 2, … , 𝑛} rearranges the 𝑛 integers in the set.
A permutation matrix is obtained by permuting the rows of an 𝑛 × 𝑛 identity matrix according to a permutation of the
numbers 1 to 𝑛.
Thus, every row and every column contain precisely a single 1 with 0 everywhere else.
Every permutation corresponds to a unique permutation matrix.
For example, the 𝑁 × 𝑁 matrix

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1
1 0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

(3.3)

serves as a cyclic shift operator that, when applied to an 𝑁 × 1 vector ℎ, shifts entries in rows 2 through 𝑁 up one row
and shifts the entry in row 1 to row 𝑁 .
Eigenvalues of the cyclic shift permutation matrix 𝑃 defined in equation (3.3) can be computed by constructing

𝑃 − 𝜆𝐼 =

⎡
⎢
⎢
⎢
⎢
⎣

−𝜆 1 0 0 ⋯ 0
0 −𝜆 1 0 ⋯ 0
0 0 −𝜆 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1
1 0 0 0 ⋯ −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

and solving

det(𝑃 − 𝜆𝐼) = (−1)𝑁𝜆𝑁 − 1 = 0

Eigenvalues 𝜆𝑖 can be complex.
Magnitudes ∣ 𝜆𝑖 ∣ of these eigenvalues 𝜆𝑖 all equal 1.
Thus, singular values of the permutation matrix 𝑃 defined in equation (3.3) all equal 1.
It can be verified that permutation matrices are orthogonal matrices:

𝑃𝑃 ′ = 𝐼
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3.4 Examples with Python

Let’s write some Python code to illustrate these ideas.

@njit
def construct_P(N):

P = np.zeros((N, N))

for i in range(N-1):
P[i, i+1] = 1

P[-1, 0] = 1

return P

P4 = construct_P(4)
P4

array([[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]])

# compute the eigenvalues and eigenvectors
, Q = np.linalg.eig(P4)

for i in range(4):
print(f' {i} = { [i]:.1f} \nvec{i} = {Q[i, :]}\n')

0 = -1.0+0.0j
vec0 = [-0.5+0.j 0.5+0.j 0.5-0.j -0.5+0.j]

1 = -0.0+1.0j
vec1 = [ 0.5+0.j -0. +0.5j -0. -0.5j -0.5+0.j ]

2 = -0.0-1.0j
vec2 = [-0.5+0.j -0.5-0.j -0.5+0.j -0.5+0.j]

3 = 1.0+0.0j
vec3 = [ 0.5+0.j 0. -0.5j 0. +0.5j -0.5+0.j ]

In graphs below, we shall portray eigenvalues of a shift permutation matrix in the complex plane.
These eigenvalues are uniformly distributed along the unit circle.
They are the 𝑛 roots of unity, meaning they are the 𝑛 numbers 𝑧 that solve 𝑧𝑛 = 1, where 𝑧 is a complex number.
In particular, the 𝑛 roots of unity are

𝑧 = exp(2𝜋𝑗𝑘
𝑁 ) , 𝑘 = 0, … , 𝑁 − 1

where 𝑗 denotes the purely imaginary unit number.
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fig, ax = plt.subplots(2, 2, figsize=(10, 10))

for i, N in enumerate([3, 4, 6, 8]):

row_i = i // 2
col_i = i % 2

P = construct_P(N)
, Q = np.linalg.eig(P)

circ = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
ax[row_i, col_i].add_patch(circ)

for j in range(N):
ax[row_i, col_i].scatter( [j].real, [j].imag, c='b')

ax[row_i, col_i].set_title(f'N = {N}')
ax[row_i, col_i].set_xlabel('real')
ax[row_i, col_i].set_ylabel('imaginary')

plt.show()
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For a vector of coefficients {𝑐𝑖}𝑛−1
𝑖=0 , eigenvectors of 𝑃 are also eigenvectors of

𝐶 = 𝑐0𝐼 + 𝑐1𝑃 + 𝑐2𝑃 2 + ⋯ + 𝑐𝑁−1𝑃 𝑁−1.

Consider an example in which 𝑁 = 8 and let 𝑤 = 𝑒−2𝜋𝑗/𝑁 .
It can be verified that the matrix 𝐹8 of eigenvectors of 𝑃8 is

𝐹8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
1 𝑤 𝑤2 ⋯ 𝑤7

1 𝑤2 𝑤4 ⋯ 𝑤14

1 𝑤3 𝑤6 ⋯ 𝑤21

1 𝑤4 𝑤8 ⋯ 𝑤28

1 𝑤5 𝑤10 ⋯ 𝑤35

1 𝑤6 𝑤12 ⋯ 𝑤42

1 𝑤7 𝑤14 ⋯ 𝑤49

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The matrix 𝐹8 defines a Discete Fourier Transform.
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To convert it into an orthogonal eigenvector matrix, we can simply normalize it by dividing every entry by
√

8.
• stare at the first column of 𝐹8 above to convince yourself of this fact

The eigenvalues corresponding to each eigenvector are {𝑤𝑗}7
𝑗=0 in order.

def construct_F(N):

w = np.e ** (-complex(0, 2*np.pi/N))

F = np.ones((N, N), dtype=complex)
for i in range(1, N):

F[i, 1:] = w ** (i * np.arange(1, N))

return F, w

F8, w = construct_F(8)

w

(0.7071067811865476-0.7071067811865475j)

F8

array([[ 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ,
1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ],

[ 1. +0.j , 0.707-0.707j, 0. -1.j , -0.707-0.707j,
-1. -0.j , -0.707+0.707j, -0. +1.j , 0.707+0.707j],

[ 1. +0.j , 0. -1.j , -1. -0.j , -0. +1.j ,
1. +0.j , 0. -1.j , -1. -0.j , -0. +1.j ],

[ 1. +0.j , -0.707-0.707j, -0. +1.j , 0.707-0.707j,
-1. -0.j , 0.707+0.707j, 0. -1.j , -0.707+0.707j],

[ 1. +0.j , -1. -0.j , 1. +0.j , -1. -0.j ,
1. +0.j , -1. -0.j , 1. +0.j , -1. -0.j ],

[ 1. +0.j , -0.707+0.707j, 0. -1.j , 0.707+0.707j,
-1. -0.j , 0.707-0.707j, -0. +1.j , -0.707-0.707j],

[ 1. +0.j , -0. +1.j , -1. -0.j , 0. -1.j ,
1. +0.j , -0. +1.j , -1. -0.j , 0. -1.j ],

[ 1. +0.j , 0.707+0.707j, -0. +1.j , -0.707+0.707j,
-1. -0.j , -0.707-0.707j, 0. -1.j , 0.707-0.707j]])

# normalize
Q8 = F8 / np.sqrt(8)

# verify the orthogonality (unitarity)
Q8 @ np.conjugate(Q8)

array([[ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],

[-0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],

[-0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j,

(continues on next page)
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(continued from previous page)

0.+0.j],
[-0.-0.j, -0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j,
-0.+0.j],

[ 0.-0.j, -0.-0.j, -0.-0.j, -0.+0.j, 1.+0.j, -0.+0.j, -0.+0.j,
-0.+0.j],

[ 0.-0.j, 0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j,
-0.+0.j],

[ 0.-0.j, 0.-0.j, 0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, 1.+0.j,
-0.+0.j],

[ 0.-0.j, 0.-0.j, 0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j,
1.+0.j]])

Let’s verify that 𝑘th column of 𝑄8 is an eigenvector of 𝑃8 with an eigenvalue 𝑤𝑘.

P8 = construct_P(8)

diff_arr = np.empty(8, dtype=complex)
for j in range(8):

diff = P8 @ Q8[:, j] - w ** j * Q8[:, j]
diff_arr[j] = diff @ diff.T

diff_arr

array([ 0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j,
-0.+0.j])

3.5 Associated Permutation Matrix

Next, we execute calculations to verify that the circulant matrix 𝐶 defined in equation (3.1) can be written as

𝐶 = 𝑐0𝐼 + 𝑐1𝑃 + ⋯ + 𝑐𝑛−1𝑃 𝑛−1

and that every eigenvector of 𝑃 is also an eigenvector of 𝐶.
We illustrate this for 𝑁 = 8 case.

c = np.random.random(8)

c

array([0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776])

C8 = construct_cirlulant(c)

Compute 𝑐0𝐼 + 𝑐1𝑃 + ⋯ + 𝑐𝑛−1𝑃 𝑛−1.
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N = 8

C = np.zeros((N, N))
P = np.eye(N)

for i in range(N):
C += c[i] * P
P = P8 @ P

C

array([[0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776],
[0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461],
[0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394],
[0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839],
[0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779],
[0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387],
[0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504],
[0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985]])

C8

array([[0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776],
[0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394, 0.461],
[0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839, 0.394],
[0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779, 0.839],
[0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387, 0.779],
[0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504, 0.387],
[0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985, 0.504],
[0.504, 0.387, 0.779, 0.839, 0.394, 0.461, 0.776, 0.985]])

Now let’s compute the difference between two circulant matrices that we have constructed in two different ways.

np.abs(C - C8).max()

0.0

The 𝑘th column of𝑃8 associated with eigenvalue𝑤𝑘−1 is an eigenvector of𝐶8 associated with an eigenvalue∑7
ℎ=0 𝑐𝑗𝑤ℎ𝑘.

_C8 = np.zeros(8, dtype=complex)

for j in range(8):
for k in range(8):

_C8[j] += c[k] * w ** (j * k)

_C8

array([5.125+0.j , 0.222-0.006j, 0.976+0.656j, 0.07 -0.155j,
0.22 -0.j , 0.07 +0.155j, 0.976-0.656j, 0.222+0.006j])

We can verify this by comparing C8 @ Q8[:, j] with _C8[j] * Q8[:, j].
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# verify
for j in range(8):

diff = C8 @ Q8[:, j] - _C8[j] * Q8[:, j]
print(diff)

[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.-0.j -0.-0.j -0.-0.j -0.-0.j -0.-0.j -0.+0.j -0.+0.j]
[ 0.-0.j -0.-0.j -0.-0.j -0.+0.j 0.-0.j -0.-0.j -0.+0.j 0.+0.j]
[-0.+0.j -0.-0.j -0.+0.j 0.-0.j -0.-0.j -0.+0.j 0.-0.j -0.-0.j]
[ 0.+0.j -0.-0.j 0.+0.j -0.-0.j 0.-0.j -0.-0.j 0.+0.j -0.-0.j]
[ 0.+0.j -0.-0.j 0.+0.j -0.-0.j 0.-0.j 0.+0.j -0.-0.j 0.-0.j]
[ 0.+0.j -0.-0.j 0.-0.j 0.+0.j -0.-0.j 0.-0.j 0.-0.j 0.+0.j]
[-0.+0.j 0.-0.j 0.-0.j 0.-0.j 0.-0.j 0.-0.j 0.+0.j 0.+0.j]

3.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) allows us to represent a discrete time sequence as a weighted sum of complex
sinusoids.
Consider a sequence of 𝑁 real number {𝑥𝑗}𝑁−1

𝑗=0 .

The Discrete Fourier Transform maps {𝑥𝑗}𝑁−1
𝑗=0 into a sequence of complex numbers {𝑋𝑘}𝑁−1

𝑘=0

where

𝑋𝑘 =
𝑁−1
∑
𝑛=0

𝑥𝑛𝑒−2𝜋 𝑘𝑛
𝑁 𝑖

def DFT(x):
"The discrete Fourier transform."

N = len(x)
w = np.e ** (-complex(0, 2*np.pi/N))

X = np.zeros(N, dtype=complex)
for k in range(N):

for n in range(N):
X[k] += x[n] * w ** (k * n)

return X

Consider the following example.

𝑥𝑛 = {1/2 𝑛 = 0, 1
0 otherwise

x = np.zeros(10)
x[0:2] = 1/2

x
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array([0.5, 0.5, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ])

Apply a discrete Fourier transform.

X = DFT(x)

X

array([ 1. +0.j , 0.905-0.294j, 0.655-0.476j, 0.345-0.476j,
0.095-0.294j, -0. +0.j , 0.095+0.294j, 0.345+0.476j,
0.655+0.476j, 0.905+0.294j])

We can plot magnitudes of a sequence of numbers and the associated discrete Fourier transform.

def plot_magnitude(x=None, X=None):

data = []
names = []
xs = []
if (x is not None):

data.append(x)
names.append('x')
xs.append('n')

if (X is not None):
data.append(X)
names.append('X')
xs.append('j')

num = len(data)
for i in range(num):

n = data[i].size
plt.figure(figsize=(8, 3))
plt.scatter(range(n), np.abs(data[i]))
plt.vlines(range(n), 0, np.abs(data[i]), color='b')

plt.xlabel(xs[i])
plt.ylabel('magnitude')
plt.title(names[i])
plt.show()

plot_magnitude(x=x, X=X)
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The inverse Fourier transform transforms a Fourier transform 𝑋 of 𝑥 back to 𝑥.
The inverse Fourier transform is defined as

𝑥𝑛 =
𝑁−1
∑
𝑘=0

1
𝑁 𝑋𝑘𝑒2𝜋( 𝑘𝑛

𝑁 )𝑖, 𝑛 = 0, 1, … , 𝑁 − 1

def inverse_transform(X):

N = len(X)
w = np.e ** (complex(0, 2*np.pi/N))

x = np.zeros(N, dtype=complex)
for n in range(N):

for k in range(N):
x[n] += X[k] * w ** (k * n) / N

return x
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inverse_transform(X)

array([ 0.5+0.j, 0.5-0.j, -0. -0.j, -0. -0.j, -0. -0.j, -0. -0.j,
-0. +0.j, -0. +0.j, -0. +0.j, -0. +0.j])

Another example is

𝑥𝑛 = 2 cos(2𝜋 11
40𝑛) , 𝑛 = 0, 1, 2, ⋯ 19

Since 𝑁 = 20, we cannot use an integer multiple of 1
20 to represent a frequency 11

40 .
To handle this, we shall end up using all 𝑁 of the availble frequencies in the DFT.
Since 11

40 is in between 10
40 and 12

40 (each of which is an integer multiple of 1
20 ), the complex coefficients in the DFT have

their largest magnitudes at 𝑘 = 5, 6, 15, 16, not just at a single frequency.

N = 20
x = np.empty(N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

X = DFT(x)

plot_magnitude(x=x, X=X)
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What happens if we change the last example to 𝑥𝑛 = 2 cos (2𝜋 10
40 𝑛)?

Note that 10
40 is an integer multiple of 1

20 .

N = 20
x = np.empty(N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 10 * j / 40)

X = DFT(x)

plot_magnitude(x=x, X=X)
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If we represent the discrete Fourier transform as a matrix, we discover that it equals the matrix 𝐹𝑁 of eigenvectors of the
permutation matrix 𝑃𝑁 .
We can use the example where 𝑥𝑛 = 2 cos (2𝜋 11

40 𝑛) , 𝑛 = 0, 1, 2, ⋯ 19 to illustrate this.

N = 20
x = np.empty(N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

x

array([ 2. , -0.313, -1.902, 0.908, 1.618, -1.414, -1.176, 1.782,
0.618, -1.975, -0. , 1.975, -0.618, -1.782, 1.176, 1.414,

-1.618, -0.908, 1.902, 0.313])

First use the summation formula to transform 𝑥 to 𝑋.

X = DFT(x)
X

array([2. +0.j , 2. +0.558j, 2. +1.218j, 2. +2.174j, 2. +4.087j,
2.+12.785j, 2.-12.466j, 2. -3.751j, 2. -1.801j, 2. -0.778j,
2. -0.j , 2. +0.778j, 2. +1.801j, 2. +3.751j, 2.+12.466j,
2.-12.785j, 2. -4.087j, 2. -2.174j, 2. -1.218j, 2. -0.558j])

Now let’s evaluate the outcome of postmultiplying the eigenvector matrix 𝐹20 by the vector 𝑥, a product that we claim
should equal the Fourier tranform of the sequence {𝑥𝑛}𝑁−1

𝑛=0 .

F20, _ = construct_F(20)

F20 @ x
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array([2. +0.j , 2. +0.558j, 2. +1.218j, 2. +2.174j, 2. +4.087j,
2.+12.785j, 2.-12.466j, 2. -3.751j, 2. -1.801j, 2. -0.778j,
2. -0.j , 2. +0.778j, 2. +1.801j, 2. +3.751j, 2.+12.466j,
2.-12.785j, 2. -4.087j, 2. -2.174j, 2. -1.218j, 2. -0.558j])

Similarly, the inverse DFT can be expressed as a inverse DFT matrix 𝐹 −1
20 .

F20_inv = np.linalg.inv(F20)
F20_inv @ X

array([ 2. -0.j, -0.313+0.j, -1.902-0.j, 0.908-0.j, 1.618-0.j,
-1.414-0.j, -1.176+0.j, 1.782-0.j, 0.618-0.j, -1.975-0.j,
-0. +0.j, 1.975-0.j, -0.618-0.j, -1.782+0.j, 1.176+0.j,
1.414-0.j, -1.618-0.j, -0.908+0.j, 1.902+0.j, 0.313-0.j])

52 Chapter 3. Circulant Matrices



CHAPTER

FOUR

SINGULAR VALUE DECOMPOSITION (SVD)

4.1 Overview

The singular value decomposition (SVD) is a work-horse in applications of least squares projection that form founda-
tions for many statistical and machine learning methods.
After defining the SVD, we’ll describe how it connects to

• four fundamental spaces of linear algebra
• under-determined and over-determined least squares regressions
• principal components analysis (PCA)

Like principal components analysis (PCA), DMD can be thought of as a data-reduction procedure that represents salient
patterns by projecting data onto a limited set of factors.
In a sequel to this lecture aboutDynamicMode Decompositions, we’ll describe how SVD’s provide ways rapidly to compute
reduced-order approximations to first-order Vector Autoregressions (VARs).

4.2 The Setting

Let 𝑋 be an 𝑚 × 𝑛 matrix of rank 𝑝.
Necessarily, 𝑝 ≤ min(𝑚, 𝑛).
In much of this lecture, we’ll think of 𝑋 as a matrix of data in which

• each column is an individual – a time period or person, depending on the application
• each row is a random variable describing an attribute of a time period or a person, depending on the application

We’ll be interested in two situations
• A short and fat case in which 𝑚 << 𝑛, so that there are many more columns (individuals) than rows (attributes).
• A tall and skinny case in which𝑚 >> 𝑛, so that there are manymore rows (attributes) than columns (individuals).

We’ll apply a singular value decomposition of 𝑋 in both situations.
In the 𝑚 << 𝑛 case in which there are many more individuals 𝑛 than attributes 𝑚, we can calculate sample moments of
a joint distribution by taking averages across observations of functions of the observations.
In this 𝑚 << 𝑛 case, we’ll look for patterns by using a singular value decomposition to do a principal components
analysis (PCA).
In the 𝑚 >> 𝑛 case in which there are many more attributes 𝑚 than individuals 𝑛 and when we are in a time-series
setting in which 𝑛 equals the number of time periods covered in the data set 𝑋, we’ll proceed in a different way.
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We’ll again use a singular value decomposition, but now to construct a dynamic mode decomposition (DMD)

4.3 Singular Value Decomposition

A singular value decomposition of an 𝑚 × 𝑛 matrix 𝑋 of rank 𝑝 ≤ min(𝑚, 𝑛) is

𝑋 = 𝑈Σ𝑉 ⊤ (4.1)

where

𝑈𝑈⊤ = 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 = 𝐼

and
• 𝑈 is an 𝑚 × 𝑚 orthogonal matrix of left singular vectors of 𝑋
• Columns of 𝑈 are eigenvectors of 𝑋𝑋⊤

• 𝑉 is an 𝑛 × 𝑛 orthogonal matrix of right singular vectors of 𝑋
• Columns of 𝑉 are eigenvectors of 𝑋⊤𝑋
• Σ is an 𝑚 × 𝑛 matrix in which the first 𝑝 places on its main diagonal are positive numbers 𝜎1, 𝜎2, … , 𝜎𝑝 called
singular values; remaining entries of Σ are all zero

• The 𝑝 singular values are positive square roots of the eigenvalues of the 𝑚 × 𝑚 matrix 𝑋𝑋⊤ and also of the 𝑛 × 𝑛
matrix 𝑋⊤𝑋

• We adopt a convention that when 𝑈 is a complex valued matrix, 𝑈⊤ denotes the conjugate-transpose or
Hermitian-transpose of 𝑈 , meaning that 𝑈⊤

𝑖𝑗 is the complex conjugate of 𝑈𝑗𝑖.

• Similarly, when 𝑉 is a complex valued matrix, 𝑉 ⊤ denotes the conjugate-transpose or Hermitian-transpose of
𝑉

The matrices 𝑈, Σ, 𝑉 entail linear transformations that reshape in vectors in the following ways:
• multiplying vectors by the unitary matrices 𝑈 and 𝑉 rotates them, but leaves angles between vectors and lengths
of vectors unchanged.

• multiplying vectors by the diagonal matrix Σ leaves angles between vectors unchanged but rescales vectors.
Thus, representation (4.1) asserts that multiplying an 𝑛 × 1 vector 𝑦 by the 𝑚 × 𝑛 matrix 𝑋 amounts to performing the
following three multiplications of 𝑦 sequentially:

• rotating 𝑦 by computing 𝑉 ⊤𝑦
• rescaling 𝑉 ⊤𝑦 by multiplying it by Σ
• rotating Σ𝑉 ⊤𝑦 by multiplying it by 𝑈

This structure of the 𝑚 × 𝑛 matrix 𝑋 opens the door to constructing systems of data encoders and decoders.
Thus,

• 𝑉 ⊤𝑦 is an encoder
• Σ is an operator to be applied to the encoded data
• 𝑈 is a decoder to be applied to the output from applying operator Σ to the encoded data
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We’ll apply this circle of ideas later in this lecture when we study Dynamic Mode Decomposition.
Road Ahead
What we have described above is called a full SVD.
In a full SVD, the shapes of 𝑈 , Σ, and 𝑉 are (𝑚, 𝑚), (𝑚, 𝑛), (𝑛, 𝑛), respectively.
Later we’ll also describe an economy or reduced SVD.
Before we study a reduced SVD we’ll say a little more about properties of a full SVD.

4.4 Four Fundamental Subspaces

Let 𝒞 denote a column space, 𝒩 denote a null space, and ℛ denote a row space.
Let’s start by recalling the four fundamental subspaces of an 𝑚 × 𝑛 matrix 𝑋 of rank 𝑝.

• The column space of 𝑋, denoted 𝒞(𝑋), is the span of the columns of 𝑋, i.e., all vectors 𝑦 that can be written as
linear combinations of columns of 𝑋. Its dimension is 𝑝.

• The null space of 𝑋, denoted 𝒩(𝑋) consists of all vectors 𝑦 that satisfy 𝑋𝑦 = 0. Its dimension is 𝑛 − 𝑝.
• The row space of 𝑋, denoted ℛ(𝑋) is the column space of 𝑋⊤. It consists of all vectors 𝑧 that can be written as
linear combinations of rows of 𝑋. Its dimension is 𝑝.

• The left null space of 𝑋, denoted 𝒩(𝑋⊤), consist of all vectors 𝑧 such that 𝑋⊤𝑧 = 0. Its dimension is 𝑚 − 𝑝.
For a full SVD of a matrix 𝑋, the matrix 𝑈 of left singular vectors and the matrix 𝑉 of right singular vectors contain
orthogonal bases for all four subspaces.
They form two pairs of orthogonal subspaces that we’ll describe now.
Let 𝑢𝑖, 𝑖 = 1, … , 𝑚 be the 𝑚 column vectors of 𝑈 and let 𝑣𝑖, 𝑖 = 1, … , 𝑛 be the 𝑛 column vectors of 𝑉 .
Let’s write the full SVD of X as

𝑋 = [𝑈𝐿 𝑈𝑅] [Σ𝑝 0
0 0] [𝑉𝐿 𝑉𝑅]⊤ (4.2)

where Σ𝑝 is a 𝑝 × 𝑝 diagonal matrix with the 𝑝 singular values on the diagonal and

𝑈𝐿 = [𝑢1 ⋯ 𝑢𝑝] , 𝑈𝑅 = [𝑢𝑝+1 ⋯ 𝑢𝑚]
𝑉𝐿 = [𝑣1 ⋯ 𝑣𝑝] , 𝑈𝑅 = [𝑣𝑝+1 ⋯ 𝑢𝑛]

Representation (4.2) implies that

𝑋 [𝑉𝐿 𝑉𝑅] = [𝑈𝐿 𝑈𝑅] [Σ𝑝 0
0 0]

or

𝑋𝑉𝐿 = 𝑈𝐿Σ𝑝
𝑋𝑉𝑅 = 0 (4.3)

or

𝑋𝑣𝑖 = 𝜎𝑖𝑢𝑖, 𝑖 = 1, … , 𝑝
𝑋𝑣𝑖 = 0, 𝑖 = 𝑝 + 1, … , 𝑛 (4.4)

Equations (4.4) tell how the transformation𝑋 maps a pair of orthonormal vectors 𝑣𝑖, 𝑣𝑗 for 𝑖 and 𝑗 both less than or equal
to the rank 𝑝 of 𝑋 into a pair of orthonormal vectors 𝑢𝑖, 𝑢𝑗.
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Equations (4.3) assert that

𝒞(𝑋) = 𝒞(𝑈𝐿)
𝒩(𝑋) = 𝒞(𝑉𝑅)

Taking transposes on both sides of representation (4.2) implies

𝑋⊤ [𝑈𝐿 𝑈𝑅] = [𝑉𝐿 𝑉𝑅] [Σ𝑝 0
0 0]

or
𝑋⊤𝑈𝐿 = 𝑉𝐿Σ𝑝
𝑋⊤𝑈𝑅 = 0 (4.5)

or
𝑋⊤𝑢𝑖 = 𝜎𝑖𝑣𝑖, 𝑖 = 1, … , 𝑝
𝑋⊤𝑢𝑖 = 0 𝑖 = 𝑝 + 1, … , 𝑚 (4.6)

Notice how equations (4.6) assert that the transformation 𝑋⊤ maps a pair of distinct orthonormal vectors 𝑢𝑖, 𝑢𝑗 for 𝑖 and
𝑗 both less than or equal to the rank 𝑝 of 𝑋 into a pair of distinct orthonormal vectors 𝑣𝑖, 𝑣𝑗 .
Equations (4.5) assert that

ℛ(𝑋) ≡ 𝒞(𝑋⊤) = 𝒞(𝑉𝐿)
𝒩(𝑋⊤) = 𝒞(𝑈𝑅)

Thus, taken together, the systems of equations (4.3) and (4.5) describe the four fundamental subspaces of 𝑋 in the
following ways:

𝒞(𝑋) = 𝒞(𝑈𝐿)
𝒩(𝑋⊤) = 𝒞(𝑈𝑅)

ℛ(𝑋) ≡ 𝒞(𝑋⊤) = 𝒞(𝑉𝐿)
𝒩(𝑋) = 𝒞(𝑉𝑅)

(4.7)

Since 𝑈 and 𝑉 are both orthonormal matrices, collection (4.7) asserts that
• 𝑈𝐿 is an orthonormal basis for the column space of 𝑋
• 𝑈𝑅 is an orthonormal basis for the null space of 𝑋⊤

• 𝑉𝐿 is an orthonormal basis for the row space of 𝑋
• 𝑉𝑅 is an orthonormal basis for the null space of 𝑋

We have verified the four claims in (4.7) simply by performing the multiplications called for by the right side of (4.2) and
reading them.
The claims in (4.7) and the fact that 𝑈 and 𝑉 are both unitary (i.e, orthonormal) matrices imply that

• the column space of 𝑋 is orthogonal to the null space of 𝑋⊤

• the null space of 𝑋 is orthogonal to the row space of 𝑋
Sometimes these properties are described with the following two pairs of orthogonal complement subspaces:

• 𝒞(𝑋) is the orthogonal complement of 𝒩(𝑋⊤)
• ℛ(𝑋) is the orthogonal complement 𝒩(𝑋)

Let’s do an example.
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import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt

Having imported these modules, let’s do the example.

np.set_printoptions(precision=2)

# Define the matrix
A = np.array([[1, 2, 3, 4, 5],

[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8],
[5, 6, 7, 8, 9]])

# Compute the SVD of the matrix
U, S, V = np.linalg.svd(A,full_matrices=True)

# Compute the rank of the matrix
rank = np.linalg.matrix_rank(A)

# Print the rank of the matrix
print("Rank of matrix:\n", rank)
print("S: \n", S)

# Compute the four fundamental subspaces
row_space = U[:, :rank]
col_space = V[:, :rank]
null_space = V[:, rank:]
left_null_space = U[:, rank:]

print("U:\n", U)
print("Column space:\n", col_space)
print("Left null space:\n", left_null_space)
print("V.T:\n", V.T)
print("Row space:\n", row_space.T)
print("Right null space:\n", null_space.T)

Rank of matrix:
2

S:
[2.69e+01 1.86e+00 8.62e-16 5.26e-16 2.77e-17]

U:
[[-0.27 -0.73 -0.53 -0.34 0.03]
[-0.35 -0.42 0.24 0.8 -0.07]
[-0.43 -0.11 0.67 -0.41 0.43]
[-0.51 0.19 0.09 -0.22 -0.8 ]
[-0.59 0.5 -0.46 0.17 0.4 ]]

Column space:
[[-0.27 -0.35]
[ 0.73 0.42]
[-0.03 0.16]
[-0.51 0.82]
[ 0.37 0.06]]

Left null space:

(continues on next page)
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[[-0.53 -0.34 0.03]
[ 0.24 0.8 -0.07]
[ 0.67 -0.41 0.43]
[ 0.09 -0.22 -0.8 ]
[-0.46 0.17 0.4 ]]

V.T:
[[-0.27 0.73 -0.03 -0.51 0.37]
[-0.35 0.42 0.16 0.82 0.06]
[-0.43 0.11 0.25 -0.23 -0.83]
[-0.51 -0.19 -0.84 0.04 -0.02]
[-0.59 -0.5 0.46 -0.12 0.41]]

Row space:
[[-0.27 -0.35 -0.43 -0.51 -0.59]
[-0.73 -0.42 -0.11 0.19 0.5 ]]

Right null space:
[[-0.43 0.11 0.25 -0.23 -0.83]
[-0.51 -0.19 -0.84 0.04 -0.02]
[-0.59 -0.5 0.46 -0.12 0.41]]

4.5 Eckart-Young Theorem

Suppose that we want to construct the best rank 𝑟 approximation of an 𝑚 × 𝑛 matrix 𝑋.
By best, we mean a matrix 𝑋𝑟 of rank 𝑟 < 𝑝 that, among all rank 𝑟 matrices, minimizes

||𝑋 − 𝑋𝑟||

where || ⋅ || denotes a norm of a matrix 𝑋 and where 𝑋𝑟 belongs to the space of all rank 𝑟 matrices of dimension 𝑚 × 𝑛.
Three popular matrix norms of an 𝑚 × 𝑛 matrix 𝑋 can be expressed in terms of the singular values of 𝑋

• the spectral or 𝑙2 norm ||𝑋||2 = max||𝑦||≠0
||𝑋𝑦||
||𝑦|| = 𝜎1

• the Frobenius norm ||𝑋||𝐹 = √𝜎2
1 + ⋯ + 𝜎2𝑝

• the nuclear norm ||𝑋||𝑁 = 𝜎1 + ⋯ + 𝜎𝑝

The Eckart-Young theorem states that for each of these three norms, same rank 𝑟 matrix is best and that it equals

�̂�𝑟 = 𝜎1𝑈1𝑉 ⊤
1 + 𝜎2𝑈2𝑉 ⊤

2 + ⋯ + 𝜎𝑟𝑈𝑟𝑉 ⊤
𝑟 (4.8)

This is a very powerful theorem that says that we can take our 𝑚 × 𝑛 matrix 𝑋 that in not full rank, and we can best
approximate it by a full rank 𝑝 × 𝑝 matrix through the SVD.
Moreover, if some of these 𝑝 singular values carry more information than others, and if we want to have the most amount
of information with the least amount of data, we can take 𝑟 leading singular values ordered by magnitude.
We’ll say more about this later when we present Principal Component Analysis.
You can read about the Eckart-Young theorem and some of its uses here.
We’ll make use of this theorem when we discuss principal components analysis (PCA) and also dynamic mode decom-
position (DMD).
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4.6 Full and Reduced SVD’s

Up to now we have described properties of a full SVD in which shapes of 𝑈 , Σ, and 𝑉 are (𝑚, 𝑚), (𝑚, 𝑛), (𝑛, 𝑛),
respectively.
There is an alternative bookkeeping convention called an economy or reduced SVD in which the shapes of 𝑈, Σ and 𝑉
are different from what they are in a full SVD.
Thus, note that because we assume that 𝑋 has rank 𝑝, there are only 𝑝 nonzero singular values, where 𝑝 = rank(𝑋) ≤
min (𝑚, 𝑛).
A reduced SVD uses this fact to express 𝑈 , Σ, and 𝑉 as matrices with shapes (𝑚, 𝑝), (𝑝, 𝑝), (𝑛, 𝑝).
You can read about reduced and full SVD here https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
For a full SVD,

𝑈𝑈⊤ = 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 = 𝐼

But not all these properties hold for a reduced SVD.
Which properties hold depend on whether we are in a tall-skinny case or a short-fat case.

• In a tall-skinny case in which 𝑚 >> 𝑛, for a reduced SVD
𝑈𝑈⊤ ≠ 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 = 𝐼

• In a short-fat case in which 𝑚 << 𝑛, for a reduced SVD
𝑈𝑈⊤ = 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 ≠ 𝐼

When we study DynamicMode Decomposition below, we shall want to remember these properties when we use a reduced
SVD to compute some DMD representations.
Let’s do an exercise to compare full and reduced SVD’s.
To review,

• in a full SVD
– 𝑈 is 𝑚 × 𝑚
– Σ is 𝑚 × 𝑛
– 𝑉 is 𝑛 × 𝑛

• in a reduced SVD
– 𝑈 is 𝑚 × 𝑝
– Σ is 𝑝 × 𝑝
– 𝑉 is 𝑛 × 𝑝

First, let’s study a case in which 𝑚 = 5 > 𝑛 = 2.
(This is a small example of the tall-skinny case that will concern us when we study Dynamic Mode Decompositions
below.)
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import numpy as np
X = np.random.rand(5,2)
U, S, V = np.linalg.svd(X,full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print('U, S, V =')
U, S, V

U, S, V =

(array([[-0.31, 0.95, 0.01, 0.05, 0.08],
[-0.34, -0.03, -0.4 , -0.47, -0.7 ],
[-0.41, -0.11, 0.87, -0.14, -0.21],
[-0.44, -0.17, -0.15, 0.83, -0.25],
[-0.66, -0.25, -0.23, -0.25, 0.63]]),

array([1.62, 0.41]),
array([[-0.89, -0.46],

[-0.46, 0.89]]))

print('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array([[-0.31, 0.95],
[-0.34, -0.03],
[-0.41, -0.11],
[-0.44, -0.17],
[-0.66, -0.25]]),

array([1.62, 0.41]),
array([[-0.89, -0.46],

[-0.46, 0.89]]))

rr = np.linalg.matrix_rank(X)
print(f'rank of X = {rr}')

rank of X = 2

Properties:
• Where 𝑈 is constructed via a full SVD, 𝑈⊤𝑈 = 𝐼𝑚×𝑚 and 𝑈𝑈⊤ = 𝐼𝑚×𝑚

• Where ̂𝑈 is constructed via a reduced SVD, although ̂𝑈⊤ ̂𝑈 = 𝐼𝑝×𝑝, it happens that ̂𝑈 ̂𝑈⊤ ≠ 𝐼𝑚×𝑚

We illustrate these properties for our example with the following code cells.

UTU = U.T@U
UUT = U@U.T
print('UUT, UTU = ')
UUT, UTU

UUT, UTU =
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(array([[ 1.00e+00, 1.67e-16, -6.94e-17, -1.32e-16, -1.18e-16],
[ 1.67e-16, 1.00e+00, 2.78e-17, 5.55e-17, 5.55e-17],
[-6.94e-17, 2.78e-17, 1.00e+00, 1.39e-17, 5.55e-17],
[-1.32e-16, 5.55e-17, 1.39e-17, 1.00e+00, 1.11e-16],
[-1.18e-16, 5.55e-17, 5.55e-17, 1.11e-16, 1.00e+00]]),

array([[ 1.00e+00, 2.50e-16, 0.00e+00, 0.00e+00, 5.55e-17],
[ 2.50e-16, 1.00e+00, -8.33e-17, -1.73e-16, -1.94e-16],
[ 0.00e+00, -8.33e-17, 1.00e+00, -9.02e-17, -5.55e-17],
[ 0.00e+00, -1.73e-16, -9.02e-17, 1.00e+00, -5.55e-17],
[ 5.55e-17, -1.94e-16, -5.55e-17, -5.55e-17, 1.00e+00]]))

UhatUhatT = Uhat@Uhat.T
UhatTUhat = Uhat.T@Uhat
print('UhatUhatT, UhatTUhat= ')
UhatUhatT, UhatTUhat

UhatUhatT, UhatTUhat=

(array([[ 0.99, 0.08, 0.02, -0.02, -0.03],
[ 0.08, 0.12, 0.14, 0.15, 0.23],
[ 0.02, 0.14, 0.18, 0.2 , 0.3 ],
[-0.02, 0.15, 0.2 , 0.22, 0.33],
[-0.03, 0.23, 0.3 , 0.33, 0.49]]),

array([[1.0e+00, 2.5e-16],
[2.5e-16, 1.0e+00]]))

Remarks:
The cells above illustrate the application of the full_matrices=True and full_matrices=False options.
Using full_matrices=False returns a reduced singular value decomposition.
The full and reduced SVD’s both accurately decompose an 𝑚 × 𝑛 matrix 𝑋
When we study Dynamic Mode Decompositions below, it will be important for us to remember the preceding properties
of full and reduced SVD’s in such tall-skinny cases.
Now let’s turn to a short-fat case.
To illustrate this case, we’ll set 𝑚 = 2 < 5 = 𝑛 and compute both full and reduced SVD’s.

import numpy as np
X = np.random.rand(2,5)
U, S, V = np.linalg.svd(X,full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print('U, S, V = ')
U, S, V

U, S, V =

(array([[ 0.74, -0.67],
[ 0.67, 0.74]]),

array([1.69, 0.57]),
array([[ 0.73, 0.47, 0.16, 0.43, 0.17],

[-0.19, 0.68, 0.45, -0.53, -0.13],

(continues on next page)
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[ 0.04, -0.47, 0.87, 0.12, 0.03],
[-0.62, 0.3 , 0.1 , 0.72, -0.09],
[-0.21, 0.05, 0.02, -0.09, 0.97]]))

print('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array([[ 0.74, -0.67],
[ 0.67, 0.74]]),

array([1.69, 0.57]),
array([[ 0.73, 0.47, 0.16, 0.43, 0.17],

[-0.19, 0.68, 0.45, -0.53, -0.13]]))

Let’s verify that our reduced SVD accurately represents 𝑋

SShat=np.diag(Shat)
np.allclose(X, Uhat@SShat@Vhat)

True

4.7 Polar Decomposition

A reduced singular value decomposition (SVD) of 𝑋 is related to a polar decomposition of 𝑋

𝑋 = 𝑆𝑄

where

𝑆 = 𝑈Σ𝑈⊤

𝑄 = 𝑈𝑉 ⊤

Here
• 𝑆 is an 𝑚 × 𝑚 symmetric matrix
• 𝑄 is an 𝑚 × 𝑛 orthogonal matrix

and in our reduced SVD
• 𝑈 is an 𝑚 × 𝑝 orthonormal matrix
• Σ is a 𝑝 × 𝑝 diagonal matrix
• 𝑉 is an 𝑛 × 𝑝 orthonormal
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4.8 Application: Principal Components Analysis (PCA)

Let’s begin with a case in which 𝑛 >> 𝑚, so that we have many more individuals 𝑛 than attributes 𝑚.
The matrix 𝑋 is short and fat in an 𝑛 >> 𝑚 case as opposed to a tall and skinny case with 𝑚 >> 𝑛 to be discussed
later.
We regard 𝑋 as an 𝑚 × 𝑛 matrix of data:

𝑋 = [𝑋1 ∣ 𝑋2 ∣ ⋯ ∣ 𝑋𝑛]

where for 𝑗 = 1, … , 𝑛 the column vector 𝑋𝑗 =
⎡
⎢⎢
⎣

𝑋1𝑗
𝑋2𝑗

⋮
𝑋𝑚𝑗

⎤
⎥⎥
⎦
is a vector of observations on variables

⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑚

⎤
⎥⎥
⎦
.

In a time series setting, we would think of columns 𝑗 as indexing different times at which random variables are observed,
while rows index different random variables.
In a cross-section setting, we would think of columns 𝑗 as indexing different individuals for which random variables are
observed, while rows index different attributes.
As we have seen before, the SVD is a way to decompose a matrix into useful components, just like polar decomposition,
eigendecomposition, and many others.
PCA, on the other hand, is a method that builds on the SVD to analyze data. The goal is to apply certain steps, to help
better visualize patterns in data, using statistical tools to capture the most important patterns in data.
Step 1: Standardize the data:
Because our data matrix may hold variables of different units and scales, we first need to standardize the data.
First by computing the average of each row of 𝑋.

̄𝑋𝑗 = 1
𝑚

𝑚
∑
𝑖=1

𝑥𝑖,𝑗

We then create an average matrix out of these means:

�̄� =
⎡
⎢⎢
⎣

1
1
…
1

⎤
⎥⎥
⎦

[ ̄𝑋1 ∣ ̄𝑋2 ∣ ⋯ ∣ ̄𝑋𝑛]

And subtract out of the original matrix to create a mean centered matrix:

𝐵 = 𝑋 − �̄�

Step 2: Compute the covariance matrix:
Then because we want to extract the relationships between variables rather than just their magnitude, in other words, we
want to know how they can explain each other, we compute the covariance matrix of 𝐵.

𝐶 = 1
𝑛𝐵⊤𝐵

Step 3: Decompose the covariance matrix and arrange the singular values:
If the matrix 𝐶 is diagonalizable, we can eigendecompose it, find its eigenvalues and rearrange the eigenvalue and eigen-
vector matrices in a decreasing other.
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If 𝐶 is not diagonalizable, we can perform an SVD of 𝐶:

𝐵𝑇 𝐵 = 𝑉 Σ⊤𝑈⊤𝑈Σ𝑉 ⊤

= 𝑉 Σ⊤Σ𝑉 ⊤

𝐶 = 1
𝑛𝑉 Σ⊤Σ𝑉 ⊤

We can then rearrange the columns in the matrices 𝑉 and Σ so that the singular values are in decreasing order.
Step 4: Select singular values, (optional) truncate the rest:
We can now decide how many singular values to pick, based on how much variance you want to retain. (e.g., retaining
95% of the total variance).
We can obtain the percentage by calculating the variance contained in the leading 𝑟 factors divided by the variance in
total:

∑𝑟
𝑖=1 𝜎2

𝑖
∑𝑝

𝑖=1 𝜎2
𝑖

Step 5: Create the Score Matrix:

𝑇 = 𝐵𝑉
= 𝑈Σ𝑉 ⊤

= 𝑈Σ

4.9 Relationship of PCA to SVD

To relate an SVD to a PCA of data set 𝑋, first construct the SVD of the data matrix 𝑋:
Let’s assume that sample means of all variables are zero, so we don’t need to standardize our matrix.

𝑋 = 𝑈Σ𝑉 ⊤ = 𝜎1𝑈1𝑉 ⊤
1 + 𝜎2𝑈2𝑉 ⊤

2 + ⋯ + 𝜎𝑝𝑈𝑝𝑉 ⊤
𝑝 (4.9)

where

𝑈 = [𝑈1|𝑈2| … |𝑈𝑚]

𝑉 ⊤ =
⎡
⎢⎢
⎣

𝑉 ⊤
1

𝑉 ⊤
2

…
𝑉 ⊤

𝑛

⎤
⎥⎥
⎦

In equation (4.9), each of the 𝑚 × 𝑛 matrices 𝑈𝑗𝑉 ⊤
𝑗 is evidently of rank 1.

Thus, we have

𝑋 = 𝜎1
⎛⎜⎜⎜
⎝

𝑈11𝑉 ⊤
1

𝑈21𝑉 ⊤
1

⋯
𝑈𝑚1𝑉 ⊤

1

⎞⎟⎟⎟
⎠

+ 𝜎2
⎛⎜⎜⎜
⎝

𝑈12𝑉 ⊤
2

𝑈22𝑉 ⊤
2

⋯
𝑈𝑚2𝑉 ⊤

2

⎞⎟⎟⎟
⎠

+ … + 𝜎𝑝
⎛⎜⎜⎜
⎝

𝑈1𝑝𝑉 ⊤
𝑝

𝑈2𝑝𝑉 ⊤
𝑝

⋯
𝑈𝑚𝑝𝑉 ⊤

𝑝

⎞⎟⎟⎟
⎠

(4.10)

Here is how we would interpret the objects in the matrix equation (4.10) in a time series context:
• for each 𝑘 = 1, … , 𝑛, the object {𝑉𝑘𝑗}𝑛

𝑗=1 is a time series for the 𝑘th principal component
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• 𝑈𝑗 =
⎡
⎢⎢
⎣

𝑈1𝑘
𝑈2𝑘
…

𝑈𝑚𝑘

⎤
⎥⎥
⎦

𝑘 = 1, … , 𝑚 is a vector of loadings of variables 𝑋𝑖 on the 𝑘th principal component, 𝑖 = 1, … , 𝑚

• 𝜎𝑘 for each 𝑘 = 1, … , 𝑝 is the strength of 𝑘th principal component, where strength means contribution to the
overall covariance of 𝑋.

4.10 PCA with Eigenvalues and Eigenvectors

We now use an eigen decomposition of a sample covariance matrix to do PCA.
Let 𝑋𝑚×𝑛 be our 𝑚 × 𝑛 data matrix.
Let’s assume that sample means of all variables are zero.
We can assure this by pre-processing the data by subtracting sample means.
Define a sample covariance matrix Ω as

Ω = 𝑋𝑋⊤

Then use an eigen decomposition to represent Ω as follows:

Ω = 𝑃Λ𝑃 ⊤

Here
• 𝑃 is 𝑚 × 𝑚 matrix of eigenvectors of Ω
• Λ is a diagonal matrix of eigenvalues of Ω

We can then represent 𝑋 as

𝑋 = 𝑃𝜖

where

𝜖 = 𝑃 −1𝑋

and

𝜖𝜖⊤ = Λ.

We can verify that

𝑋𝑋⊤ = 𝑃Λ𝑃 ⊤. (4.11)

It follows that we can represent the data matrix 𝑋 as

𝑋 = [𝑋1|𝑋2| … |𝑋𝑚] = [𝑃1|𝑃2| … |𝑃𝑚]
⎡
⎢⎢
⎣

𝜖1
𝜖2
…
𝜖𝑚

⎤
⎥⎥
⎦

= 𝑃1𝜖1 + 𝑃2𝜖2 + … + 𝑃𝑚𝜖𝑚

To reconcile the preceding representation with the PCA that we had obtained earlier through the SVD, we first note that
𝜖2

𝑗 = 𝜆𝑗 ≡ 𝜎2
𝑗 .
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Now define ̃𝜖𝑗 = 𝜖𝑗
√𝜆𝑗

, which implies that ̃𝜖𝑗 ̃𝜖⊤
𝑗 = 1.

Therefore

𝑋 = √𝜆1𝑃1 ̃𝜖1 + √𝜆2𝑃2 ̃𝜖2 + … + √𝜆𝑚𝑃𝑚 ̃𝜖𝑚
= 𝜎1𝑃1 ̃𝜖2 + 𝜎2𝑃2 ̃𝜖2 + … + 𝜎𝑚𝑃𝑚 ̃𝜖𝑚,

which agrees with

𝑋 = 𝜎1𝑈1𝑉1
𝑇 + 𝜎2𝑈2𝑉2

𝑇 + … + 𝜎𝑟𝑈𝑟𝑉𝑟
𝑇

provided that we set
• 𝑈𝑗 = 𝑃𝑗 (a vector of loadings of variables on principal component 𝑗)

• 𝑉𝑘
𝑇 = ̃𝜖𝑘 (the 𝑘th principal component)

Because there are alternative algorithms for computing 𝑃 and𝑈 for given a data matrix𝑋, depending on algorithms used,
we might have sign differences or different orders of eigenvectors.
We can resolve such ambiguities about 𝑈 and 𝑃 by

1. sorting eigenvalues and singular values in descending order
2. imposing positive diagonals on 𝑃 and 𝑈 and adjusting signs in 𝑉 ⊤ accordingly

4.11 Connections

To pull things together, it is useful to assemble and compare some formulas presented above.
First, consider an SVD of an 𝑚 × 𝑛 matrix:

𝑋 = 𝑈Σ𝑉 ⊤

Compute:

𝑋𝑋⊤ = 𝑈Σ𝑉 ⊤𝑉 Σ⊤𝑈⊤

≡ 𝑈ΣΣ⊤𝑈⊤

≡ 𝑈Λ𝑈⊤
(4.12)

Compare representation (4.12) with equation (4.11) above.
Evidently, 𝑈 in the SVD is the matrix 𝑃 of eigenvectors of 𝑋𝑋⊤ and ΣΣ⊤ is the matrix Λ of eigenvalues.
Second, let’s compute

𝑋⊤𝑋 = 𝑉 Σ⊤𝑈⊤𝑈Σ𝑉 ⊤

= 𝑉 Σ⊤Σ𝑉 ⊤

Thus, the matrix 𝑉 in the SVD is the matrix of eigenvectors of 𝑋⊤𝑋
Summarizing and fitting things together, we have the eigen decomposition of the sample covariance matrix

𝑋𝑋⊤ = 𝑃Λ𝑃 ⊤

where 𝑃 is an orthogonal matrix.
Further, from the SVD of 𝑋, we know that

𝑋𝑋⊤ = 𝑈ΣΣ⊤𝑈⊤
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where 𝑈 is an orthogonal matrix.
Thus, 𝑃 = 𝑈 and we have the representation of 𝑋

𝑋 = 𝑃𝜖 = 𝑈Σ𝑉 ⊤

It follows that

𝑈⊤𝑋 = Σ𝑉 ⊤ = 𝜖

Note that the preceding implies that

𝜖𝜖⊤ = Σ𝑉 ⊤𝑉 Σ⊤ = ΣΣ⊤ = Λ,

so that everything fits together.
Below we define a class DecomAnalysis that wraps PCA and SVD for a given a data matrix X.

class DecomAnalysis:
"""
A class for conducting PCA and SVD.
X: data matrix
r_component: chosen rank for best approximation
"""

def __init__(self, X, r_component=None):

self.X = X

self.Ω = (X @ X.T)

self.m, self.n = X.shape
self.r = LA.matrix_rank(X)

if r_component:
self.r_component = r_component

else:
self.r_component = self.m

def pca(self):

, P = LA.eigh(self.Ω) # columns of P are eigenvectors

ind = sorted(range( .size), key=lambda x: [x], reverse=True)

# sort by eigenvalues
self. = [ind]
P = P[:, ind]
self.P = P @ diag_sign(P)

self.Λ = np.diag(self. )

self.explained_ratio_pca = np.cumsum(self. ) / self. .sum()

# compute the N by T matrix of principal components
self. = self.P.T @ self.X

P = self.P[:, :self.r_component]

(continues on next page)
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(continued from previous page)

= self. [:self.r_component, :]

# transform data
self.X_pca = P @

def svd(self):

U, , VT = LA.svd(self.X)

ind = sorted(range( .size), key=lambda x: [x], reverse=True)

# sort by eigenvalues
d = min(self.m, self.n)

self. = [ind]
U = U[:, ind]
D = diag_sign(U)
self.U = U @ D
VT[:d, :] = D @ VT[ind, :]
self.VT = VT

self.Σ = np.zeros((self.m, self.n))
self.Σ[:d, :d] = np.diag(self. )

_sq = self. ** 2
self.explained_ratio_svd = np.cumsum( _sq) / _sq.sum()

# slicing matrices by the number of components to use
U = self.U[:, :self.r_component]
Σ = self.Σ[:self.r_component, :self.r_component]
VT = self.VT[:self.r_component, :]

# transform data
self.X_svd = U @ Σ @ VT

def fit(self, r_component):

# pca
P = self.P[:, :r_component]
= self. [:r_component, :]

# transform data
self.X_pca = P @

# svd
U = self.U[:, :r_component]
Σ = self.Σ[:r_component, :r_component]
VT = self.VT[:r_component, :]

# transform data
self.X_svd = U @ Σ @ VT

def diag_sign(A):
"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(A)))

(continues on next page)
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(continued from previous page)

return D

We also define a function that prints out information so that we can compare decompositions obtained by different algo-
rithms.

def compare_pca_svd(da):
"""
Compare the outcomes of PCA and SVD.
"""

da.pca()
da.svd()

print('Eigenvalues and Singular values\n')
print(f'λ = {da.λ}\n')
print(f'σ^2 = {da.σ**2}\n')
print('\n')

# loading matrices
fig, axs = plt.subplots(1, 2, figsize=(14, 5))
plt.suptitle('loadings')
axs[0].plot(da.P.T)
axs[0].set_title('P')
axs[0].set_xlabel('m')
axs[1].plot(da.U.T)
axs[1].set_title('U')
axs[1].set_xlabel('m')
plt.show()

# principal components
fig, axs = plt.subplots(1, 2, figsize=(14, 5))
plt.suptitle('principal components')
axs[0].plot(da.ε.T)
axs[0].set_title('ε')
axs[0].set_xlabel('n')
axs[1].plot(da.VT[:da.r, :].T * np.sqrt(da.λ))
axs[1].set_title('$V^\top *\sqrt{\lambda}$')
axs[1].set_xlabel('n')
plt.show()

4.12 Exercises

Exercise 4.12.1
In Ordinary Least Squares (OLS), we learn to compute ̂𝛽 = (𝑋⊤𝑋)−1𝑋⊤𝑦, but there are cases such as when we have
colinearity or an underdetermined system: short fat matrix.
In these cases, the (𝑋⊤𝑋) matrix is not not invertible (its determinant is zero) or ill-conditioned (its determinant is very
close to zero).
What we can do instead is to create what is called a pseudoinverse, a full rank approximation of the inverted matrix so
we can compute ̂𝛽 with it.
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Thinking in terms of the Eckart-Young theorem, build the pseudoinverse matrix 𝑋+ and use it to compute ̂𝛽.

Solution to Exercise 4.12.1
We can use SVD to compute the pseudoinverse:

𝑋 = 𝑈Σ𝑉 ⊤

inverting 𝑋, we have:

𝑋+ = 𝑉 Σ+𝑈⊤

where:

Σ+ =
⎡
⎢⎢⎢⎢
⎣

1
𝜎1

0 ⋯ 0 0
0 1

𝜎2
⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1

𝜎𝑝
0

0 0 ⋯ 0 0

⎤
⎥⎥⎥⎥
⎦

and finally:

̂𝛽 = 𝑋+𝑦 = 𝑉 Σ+𝑈⊤𝑦

For an example PCA applied to analyzing the structure of intelligence tests see this lecture Multivariable Normal Distri-
bution.
Look at parts of that lecture that describe and illustrate the classic factor analysis model.
As mentioned earlier, in a sequel to this lecture about Dynamic Mode Decompositions, we’ll describe how SVD’s provide
ways rapidly to compute reduced-order approximations to first-order Vector Autoregressions (VARs).
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CHAPTER

FIVE

CLASSICAL CONTROL WITH LINEAR ALGEBRA

5.1 Overview

In an earlier lecture Linear Quadratic Dynamic Programming Problems, we have studied how to solve a special class
of dynamic optimization and prediction problems by applying the method of dynamic programming. In this class of
problems

• the objective function is quadratic in states and controls.
• the one-step transition function is linear.
• shocks are IID Gaussian or martingale differences.

In this lecture and a companion lecture Classical Filtering with Linear Algebra, we study the classical theory of linear-
quadratic (LQ) optimal control problems.
The classical approach does not use the two closely related methods – dynamic programming and Kalman filtering –
that we describe in other lectures, namely, Linear Quadratic Dynamic Programming Problems and A First Look at the
Kalman Filter.
Instead, they use either

• 𝑧-transform and lag operator methods, or
• matrix decompositions applied to linear systems of first-order conditions for optimum problems.

In this lecture and the sequel Classical Filtering with Linear Algebra, we mostly rely on elementary linear algebra.
The main tool from linear algebra we’ll put to work here is LU decomposition.
We’ll begin with discrete horizon problems.
Then we’ll view infinite horizon problems as appropriate limits of these finite horizon problems.
Later, we will examine the close connection between LQ control and least-squares prediction and filtering problems.
These classes of problems are connected in the sense that to solve each, essentially the same mathematics is used.
Let’s start with some standard imports:

import numpy as np
import matplotlib.pyplot as plt
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5.1.1 References

Useful references include [Whittle, 1963], [Hansen and Sargent, 1980], [Orfanidis, 1988], [Athanasios and Pillai, 1991],
and [Muth, 1960].

5.2 A Control Problem

Let 𝐿 be the lag operator, so that, for sequence {𝑥𝑡} we have 𝐿𝑥𝑡 = 𝑥𝑡−1.
More generally, let 𝐿𝑘𝑥𝑡 = 𝑥𝑡−𝑘 with 𝐿0𝑥𝑡 = 𝑥𝑡 and

𝑑(𝐿) = 𝑑0 + 𝑑1𝐿 + … + 𝑑𝑚𝐿𝑚

where 𝑑0, 𝑑1, … , 𝑑𝑚 is a given scalar sequence.
Consider the discrete-time control problem

max
{𝑦𝑡}

lim
𝑁→∞

𝑁
∑
𝑡=0

𝛽𝑡 {𝑎𝑡𝑦𝑡 − 1
2 ℎ𝑦2

𝑡 − 1
2 [𝑑(𝐿)𝑦𝑡]

2} , (5.1)

where
• ℎ is a positive parameter and 𝛽 ∈ (0, 1) is a discount factor.
• {𝑎𝑡}𝑡≥0 is a sequence of exponential order less than 𝛽−1/2, by which we mean lim𝑡→∞ 𝛽 𝑡

2 𝑎𝑡 = 0.
Maximization in (5.1) is subject to initial conditions for 𝑦−1, 𝑦−2 … , 𝑦−𝑚.
Maximization is over infinite sequences {𝑦𝑡}𝑡≥0.

5.2.1 Example

The formulation of the LQ problem given above is broad enough to encompass many useful models.
As a simple illustration, recall that in LQ Control: Foundations we consider a monopolist facing stochastic demand shocks
and adjustment costs.
Let’s consider a deterministic version of this problem, where the monopolist maximizes the discounted sum

∞
∑
𝑡=0

𝛽𝑡𝜋𝑡

and

𝜋𝑡 = 𝑝𝑡𝑞𝑡 − 𝑐𝑞𝑡 − 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 with 𝑝𝑡 = 𝛼0 − 𝛼1𝑞𝑡 + 𝑑𝑡

In this expression, 𝑞𝑡 is output, 𝑐 is average cost of production, and 𝑑𝑡 is a demand shock.
The term 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 represents adjustment costs.
You will be able to confirm that the objective function can be rewritten as (5.1) when

• 𝑎𝑡 ∶= 𝛼0 + 𝑑𝑡 − 𝑐
• ℎ ∶= 2𝛼1

• 𝑑(𝐿) ∶= √2𝛾(𝐼 − 𝐿)
Further examples of this problem for factor demand, economic growth, and government policy problems are given in ch.
IX of [Sargent, 1987].
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5.3 Finite Horizon Theory

We first study a finite 𝑁 version of the problem.
Later we will study an infinite horizon problem solution as a limiting version of a finite horizon problem.
(This will require being careful because the limits as 𝑁 → ∞ of the necessary and sufficient conditions for maximizing
finite 𝑁 versions of (5.1) are not sufficient for maximizing (5.1))
We begin by

1. fixing 𝑁 > 𝑚,
2. differentiating the finite version of (5.1) with respect to 𝑦0, 𝑦1, … , 𝑦𝑁 , and
3. setting these derivatives to zero.

For 𝑡 = 0, … , 𝑁 − 𝑚 these first-order necessary conditions are the Euler equations.
For 𝑡 = 𝑁 − 𝑚 + 1, … , 𝑁 , the first-order conditions are a set of terminal conditions.
Consider the term

𝐽 =
𝑁

∑
𝑡=0

𝛽𝑡[𝑑(𝐿)𝑦𝑡][𝑑(𝐿)𝑦𝑡]

=
𝑁

∑
𝑡=0

𝛽𝑡 (𝑑0 𝑦𝑡 + 𝑑1 𝑦𝑡−1 + ⋯ + 𝑑𝑚 𝑦𝑡−𝑚) (𝑑0 𝑦𝑡 + 𝑑1 𝑦𝑡−1 + ⋯ + 𝑑𝑚 𝑦𝑡−𝑚)

Differentiating 𝐽 with respect to 𝑦𝑡 for 𝑡 = 0, 1, … , 𝑁 − 𝑚 gives

𝜕𝐽
𝜕𝑦𝑡

= 2𝛽𝑡 𝑑0 𝑑(𝐿)𝑦𝑡 + 2𝛽𝑡+1 𝑑1 𝑑(𝐿)𝑦𝑡+1 + ⋯ + 2𝛽𝑡+𝑚 𝑑𝑚 𝑑(𝐿)𝑦𝑡+𝑚

= 2𝛽𝑡 (𝑑0 + 𝑑1 𝛽𝐿−1 + 𝑑2 𝛽2 𝐿−2 + ⋯ + 𝑑𝑚 𝛽𝑚 𝐿−𝑚) 𝑑(𝐿)𝑦𝑡

We can write this more succinctly as

𝜕𝐽
𝜕𝑦𝑡

= 2𝛽𝑡 𝑑(𝛽𝐿−1) 𝑑(𝐿)𝑦𝑡 (5.2)

Differentiating 𝐽 with respect to 𝑦𝑡 for 𝑡 = 𝑁 − 𝑚 + 1, … , 𝑁 gives

𝜕𝐽
𝜕𝑦𝑁

= 2𝛽𝑁 𝑑0 𝑑(𝐿)𝑦𝑁

𝜕𝐽
𝜕𝑦𝑁−1

= 2𝛽𝑁−1 [𝑑0 + 𝛽 𝑑1 𝐿−1] 𝑑(𝐿)𝑦𝑁−1

⋮ ⋮
𝜕𝐽

𝜕𝑦𝑁−𝑚+1
= 2𝛽𝑁−𝑚+1 [𝑑0 + 𝛽𝐿−1 𝑑1 + ⋯ + 𝛽𝑚−1 𝐿−𝑚+1 𝑑𝑚−1]𝑑(𝐿)𝑦𝑁−𝑚+1

(5.3)

With these preliminaries under our belts, we are ready to differentiate (5.1).
Differentiating (5.1) with respect to 𝑦𝑡 for 𝑡 = 0, … , 𝑁 − 𝑚 gives the Euler equations

[ℎ + 𝑑 (𝛽𝐿−1) 𝑑(𝐿)]𝑦𝑡 = 𝑎𝑡, 𝑡 = 0, 1, … , 𝑁 − 𝑚 (5.4)

The system of equations (5.4) forms a 2 × 𝑚 order linear difference equation that must hold for the values of 𝑡 indicated.
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Differentiating (5.1) with respect to 𝑦𝑡 for 𝑡 = 𝑁 − 𝑚 + 1, … , 𝑁 gives the terminal conditions

𝛽𝑁(𝑎𝑁 − ℎ𝑦𝑁 − 𝑑0 𝑑(𝐿)𝑦𝑁) = 0
𝛽𝑁−1 (𝑎𝑁−1 − ℎ𝑦𝑁−1 − (𝑑0 + 𝛽 𝑑1 𝐿−1) 𝑑(𝐿) 𝑦𝑁−1) = 0

⋮ ⋮ = 0

𝛽𝑁−𝑚+1(𝑎𝑁−𝑚+1 − ℎ𝑦𝑁−𝑚+1 − (𝑑0 + 𝛽𝐿−1𝑑1 + ⋯ + 𝛽𝑚−1𝐿−𝑚+1𝑑𝑚−1)𝑑(𝐿)𝑦𝑁−𝑚+1) = 0

(5.5)

In the finite 𝑁 problem, we want simultaneously to solve (5.4) subject to the 𝑚 initial conditions 𝑦−1, … , 𝑦−𝑚 and the 𝑚
terminal conditions (5.5).
These conditions uniquely pin down the solution of the finite 𝑁 problem.
That is, for the finite 𝑁 problem, conditions (5.4) and (5.5) are necessary and sufficient for a maximum, by concavity of
the objective function.
Next, we describe how to obtain the solution using matrix methods.

5.3.1 Matrix Methods

Let’s look at how linear algebra can be used to tackle and shed light on the finite horizon LQ control problem.

A Single Lag Term

Let’s begin with the special case in which 𝑚 = 1.
We want to solve the system of 𝑁 + 1 linear equations

[ℎ + 𝑑 (𝛽𝐿−1) 𝑑 (𝐿)]𝑦𝑡 = 𝑎𝑡, 𝑡 = 0, 1, … , 𝑁 − 1
𝛽𝑁 [𝑎𝑁 − ℎ 𝑦𝑁 − 𝑑0 𝑑 (𝐿)𝑦𝑁 ] = 0 (5.6)

where 𝑑(𝐿) = 𝑑0 + 𝑑1𝐿.
These equations are to be solved for 𝑦0, 𝑦1, … , 𝑦𝑁 as functions of 𝑎0, 𝑎1, … , 𝑎𝑁 and 𝑦−1.
Let

𝜙(𝐿) = 𝜙0 + 𝜙1𝐿 + 𝛽𝜙1𝐿−1 = ℎ + 𝑑(𝛽𝐿−1)𝑑(𝐿) = (ℎ + 𝑑2
0 + 𝑑2

1) + 𝑑1𝑑0𝐿 + 𝑑1𝑑0𝛽𝐿−1

Then we can represent (5.6) as the matrix equation

⎡
⎢
⎢
⎢
⎢
⎣

(𝜙0 − 𝑑2
1) 𝜙1 0 0 … … 0

𝛽𝜙1 𝜙0 𝜙1 0 … … 0
0 𝛽𝜙1 𝜙0 𝜙1 … … 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 … … … 𝛽𝜙1 𝜙0 𝜙1
0 … … … 0 𝛽𝜙1 𝜙0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑦𝑁
𝑦𝑁−1
𝑦𝑁−2

⋮
𝑦1
𝑦0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑎𝑁
𝑎𝑁−1
𝑎𝑁−2

⋮
𝑎1

𝑎0 − 𝜙1𝑦−1

⎤
⎥
⎥
⎥
⎥
⎦

(5.7)

or

𝑊 ̄𝑦 = ̄𝑎 (5.8)

Notice how we have chosen to arrange the 𝑦𝑡’s in reverse time order.
The matrix 𝑊 on the left side of (5.7) is “almost” a Toeplitz matrix (where each descending diagonal is constant).
There are two sources of deviation from the form of a Toeplitz matrix
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1. The first element differs from the remaining diagonal elements, reflecting the terminal condition.
2. The sub-diagonal elements equal 𝛽 time the super-diagonal elements.

The solution of (5.8) can be expressed in the form

̄𝑦 = 𝑊 −1 ̄𝑎 (5.9)

which represents each element 𝑦𝑡 of ̄𝑦 as a function of the entire vector ̄𝑎.
That is, 𝑦𝑡 is a function of past, present, and future values of 𝑎’s, as well as of the initial condition 𝑦−1.

An Alternative Representation

An alternative way to express the solution to (5.7) or (5.8) is in so-called feedback-feedforward form.
The idea here is to find a solution expressing 𝑦𝑡 as a function of past 𝑦’s and current and future 𝑎’s.
To achieve this solution, one can use an LU decomposition of 𝑊 .
There always exists a decomposition of 𝑊 of the form 𝑊 = 𝐿𝑈 where

• 𝐿 is an (𝑁 + 1) × (𝑁 + 1) lower triangular matrix.
• 𝑈 is an (𝑁 + 1) × (𝑁 + 1) upper triangular matrix.

The factorization can be normalized so that the diagonal elements of 𝑈 are unity.
Using the LU representation in (5.9), we obtain

𝑈 ̄𝑦 = 𝐿−1 ̄𝑎 (5.10)

Since 𝐿−1 is lower triangular, this representation expresses 𝑦𝑡 as a function of
• lagged 𝑦’s (via the term 𝑈 ̄𝑦), and
• current and future 𝑎’s (via the term 𝐿−1 ̄𝑎)

Because there are zeros everywhere in the matrix on the left of (5.7) except on the diagonal, super-diagonal, and sub-
diagonal, the 𝐿𝑈 decomposition takes

• 𝐿 to be zero except in the diagonal and the leading sub-diagonal.
• 𝑈 to be zero except on the diagonal and the super-diagonal.

Thus, (5.10) has the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑈12 0 0 … 0 0
0 1 𝑈23 0 … 0 0
0 0 1 𝑈34 … 0 0
0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 1 𝑈𝑁,𝑁+1
0 0 0 0 … 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦𝑁
𝑦𝑁−1
𝑦𝑁−2
𝑦𝑁−3

⋮
𝑦1
𝑦0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝐿−1
11 0 0 … 0

𝐿−1
21 𝐿−1

22 0 … 0
𝐿−1

31 𝐿−1
32 𝐿−1

33 … 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐿−1
𝑁,1 𝐿−1

𝑁,2 𝐿−1
𝑁,3 … 0

𝐿−1
𝑁+1,1 𝐿−1

𝑁+1,2 𝐿−1
𝑁+1,3 … 𝐿−1

𝑁+1 𝑁+1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑎𝑁
𝑎𝑁−1
𝑎𝑁−2

⋮
𝑎1

𝑎0 − 𝜙1𝑦−1

⎤
⎥
⎥
⎥
⎥
⎦

where 𝐿−1
𝑖𝑗 is the (𝑖, 𝑗) element of 𝐿−1 and 𝑈𝑖𝑗 is the (𝑖, 𝑗) element of 𝑈 .
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Note how the left side for a given 𝑡 involves 𝑦𝑡 and one lagged value 𝑦𝑡−1 while the right side involves all future values of
the forcing process 𝑎𝑡, 𝑎𝑡+1, … , 𝑎𝑁 .

Additional Lag Terms

We briefly indicate how this approach extends to the problem with 𝑚 > 1.
Assume that 𝛽 = 1 and let 𝐷𝑚+1 be the (𝑚 + 1) × (𝑚 + 1) symmetric matrix whose elements are determined from the
following formula:

𝐷𝑗𝑘 = 𝑑0𝑑𝑘−𝑗 + 𝑑1𝑑𝑘−𝑗+1 + … + 𝑑𝑗−1𝑑𝑘−1, 𝑘 ≥ 𝑗

Let 𝐼𝑚+1 be the (𝑚 + 1) × (𝑚 + 1) identity matrix.
Let 𝜙𝑗 be the coefficients in the expansion 𝜙(𝐿) = ℎ + 𝑑(𝐿−1)𝑑(𝐿).
Then the first order conditions (5.4) and (5.5) can be expressed as:

(𝐷𝑚+1 + ℎ𝐼𝑚+1)
⎡
⎢⎢
⎣

𝑦𝑁
𝑦𝑁−1

⋮
𝑦𝑁−𝑚

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑎𝑁
𝑎𝑁−1

⋮
𝑎𝑁−𝑚

⎤
⎥⎥
⎦

+ 𝑀
⎡
⎢⎢
⎣

𝑦𝑁−𝑚+1
𝑦𝑁−𝑚−2

⋮
𝑦𝑁−2𝑚

⎤
⎥⎥
⎦

where 𝑀 is (𝑚 + 1) × 𝑚 and

𝑀𝑖𝑗 = {𝐷𝑖−𝑗, 𝑚+1 for 𝑖 > 𝑗
0 for 𝑖 ≤ 𝑗

𝜙𝑚𝑦𝑁−1 + 𝜙𝑚−1𝑦𝑁−2 + … + 𝜙0𝑦𝑁−𝑚−1 + 𝜙1𝑦𝑁−𝑚−2+
… + 𝜙𝑚𝑦𝑁−2𝑚−1 = 𝑎𝑁−𝑚−1

𝜙𝑚𝑦𝑁−2 + 𝜙𝑚−1𝑦𝑁−3 + … + 𝜙0𝑦𝑁−𝑚−2 + 𝜙1𝑦𝑁−𝑚−3+
… + 𝜙𝑚𝑦𝑁−2𝑚−2 = 𝑎𝑁−𝑚−2

⋮
𝜙𝑚𝑦𝑚+1 + 𝜙𝑚−1𝑦𝑚 + + … + 𝜙0𝑦1 + 𝜙1𝑦0 + 𝜙𝑚𝑦−𝑚+1 = 𝑎1

𝜙𝑚𝑦𝑚 + 𝜙𝑚−1𝑦𝑚−1 + 𝜙𝑚−2 + … + 𝜙0𝑦0 + 𝜙1𝑦−1 + … + 𝜙𝑚𝑦−𝑚 = 𝑎0

As before, we can express this equation as 𝑊 ̄𝑦 = ̄𝑎.
The matrix on the left of this equation is “almost” Toeplitz, the exception being the leading𝑚×𝑚 submatrix in the upper
left-hand corner.
We can represent the solution in feedback-feedforward form by obtaining a decomposition 𝐿𝑈 = 𝑊 , and obtain

𝑈 ̄𝑦 = 𝐿−1 ̄𝑎 (5.11)

𝑡
∑
𝑗=0

𝑈−𝑡+𝑁+1, −𝑡+𝑁+𝑗+1 𝑦𝑡−𝑗 =
𝑁−𝑡
∑
𝑗=0

𝐿−𝑡+𝑁+1, −𝑡+𝑁+1−𝑗 ̄𝑎𝑡+𝑗 ,

𝑡 = 0, 1, … , 𝑁
where 𝐿−1

𝑡,𝑠 is the element in the (𝑡, 𝑠) position of 𝐿, and similarly for 𝑈 .
The left side of equation (5.11) is the “feedback” part of the optimal control law for 𝑦𝑡, while the right-hand side is the
“feedforward” part.
We note that there is a different control law for each 𝑡.
Thus, in the finite horizon case, the optimal control law is time-dependent.
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It is natural to suspect that as 𝑁 → ∞, (5.11) becomes equivalent to the solution of our infinite horizon problem, which
below we shall show can be expressed as

𝑐(𝐿)𝑦𝑡 = 𝑐(𝛽𝐿−1)−1𝑎𝑡 ,

so that as 𝑁 → ∞ we expect that for each fixed 𝑡, 𝑈−1
𝑡,𝑡−𝑗 → 𝑐𝑗 and 𝐿𝑡,𝑡+𝑗 approaches the coefficient on 𝐿−𝑗 in the

expansion of 𝑐(𝛽𝐿−1)−1.
This suspicion is true under general conditions that we shall study later.
For now, we note that by creating the matrix 𝑊 for large 𝑁 and factoring it into the 𝐿𝑈 form, good approximations to
𝑐(𝐿) and 𝑐(𝛽𝐿−1)−1 can be obtained.

5.4 Infinite Horizon Limit

For the infinite horizon problem, we propose to discover first-order necessary conditions by taking the limits of (5.4) and
(5.5) as 𝑁 → ∞.
This approach is valid, and the limits of (5.4) and (5.5) as 𝑁 approaches infinity are first-order necessary conditions for
a maximum.
However, for the infinite horizon problem with 𝛽 < 1, the limits of (5.4) and (5.5) are, in general, not sufficient for a
maximum.
That is, the limits of (5.5) do not provide enough information uniquely to determine the solution of the Euler equation
(5.4) that maximizes (5.1).
As we shall see below, a side condition on the path of 𝑦𝑡 that together with (5.4) is sufficient for an optimum is

∞
∑
𝑡=0

𝛽𝑡 ℎ𝑦2
𝑡 < ∞ (5.12)

All paths that satisfy the Euler equations, except the one that we shall select below, violate this condition and, therefore,
evidently lead to (much) lower values of (5.1) than does the optimal path selected by the solution procedure below.
Consider the characteristic equation associated with the Euler equation

ℎ + 𝑑 (𝛽𝑧−1) 𝑑 (𝑧) = 0 (5.13)

Notice that if ̃𝑧 is a root of equation (5.13), then so is 𝛽 ̃𝑧−1.
Thus, the roots of (5.13) come in “𝛽-reciprocal” pairs.
Assume that the roots of (5.13) are distinct.
Let the roots be, in descending order according to their moduli, 𝑧1, 𝑧2, … , 𝑧2𝑚.
From the reciprocal pairs property and the assumption of distinct roots, it follows that |𝑧𝑗| > √𝛽 for 𝑗 ≤ 𝑚 and |𝑧𝑗| <√𝛽 for 𝑗 > 𝑚.
It also follows that 𝑧2𝑚−𝑗 = 𝛽𝑧−1

𝑗+1, 𝑗 = 0, 1, … , 𝑚 − 1.
Therefore, the characteristic polynomial on the left side of (5.13) can be expressed as

ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) = 𝑧−𝑚𝑧0(𝑧 − 𝑧1) ⋯ (𝑧 − 𝑧𝑚)(𝑧 − 𝑧𝑚+1) ⋯ (𝑧 − 𝑧2𝑚)
= 𝑧−𝑚𝑧0(𝑧 − 𝑧1)(𝑧 − 𝑧2) ⋯ (𝑧 − 𝑧𝑚)(𝑧 − 𝛽𝑧−1

𝑚 ) ⋯ (𝑧 − 𝛽𝑧−1
2 )(𝑧 − 𝛽𝑧−1

1 ) (5.14)

where 𝑧0 is a constant.
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In (5.14), we substitute (𝑧 − 𝑧𝑗) = −𝑧𝑗(1 − 1
𝑧𝑗

𝑧) and (𝑧 − 𝛽𝑧−1
𝑗 ) = 𝑧(1 − 𝛽

𝑧𝑗
𝑧−1) for 𝑗 = 1, … , 𝑚 to get

ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) = (−1)𝑚(𝑧0𝑧1 ⋯ 𝑧𝑚)(1 − 1
𝑧1

𝑧) ⋯ (1 − 1
𝑧𝑚

𝑧)(1 − 1
𝑧1

𝛽𝑧−1) ⋯ (1 − 1
𝑧𝑚

𝛽𝑧−1)

Now define 𝑐(𝑧) = ∑𝑚
𝑗=0 𝑐𝑗 𝑧𝑗 as

𝑐 (𝑧) = [(−1)𝑚𝑧0 𝑧1 ⋯ 𝑧𝑚]
1/2

(1 − 𝑧
𝑧1

) (1 − 𝑧
𝑧2

) ⋯ (1 − 𝑧
𝑧𝑚

) (5.15)

Notice that (5.14) can be written

ℎ + 𝑑 (𝛽𝑧−1) 𝑑 (𝑧) = 𝑐 (𝛽𝑧−1) 𝑐 (𝑧) (5.16)

It is useful to write (5.15) as

𝑐(𝑧) = 𝑐0(1 − 𝜆1 𝑧) … (1 − 𝜆𝑚𝑧) (5.17)

where

𝑐0 = [(−1)𝑚 𝑧0 𝑧1 ⋯ 𝑧𝑚]1/2 ; 𝜆𝑗 = 1
𝑧𝑗

, 𝑗 = 1, … , 𝑚

Since |𝑧𝑗| > √𝛽 for 𝑗 = 1, … , 𝑚 it follows that |𝜆𝑗| < 1/√𝛽 for 𝑗 = 1, … , 𝑚.
Using (5.17), we can express the factorization (5.16) as

ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) = 𝑐2
0(1 − 𝜆1𝑧) ⋯ (1 − 𝜆𝑚𝑧)(1 − 𝜆1𝛽𝑧−1) ⋯ (1 − 𝜆𝑚𝛽𝑧−1)

In sum, we have constructed a factorization (5.16) of the characteristic polynomial for the Euler equation in which the
zeros of 𝑐(𝑧) exceed 𝛽1/2 in modulus, and the zeros of 𝑐 (𝛽𝑧−1) are less than 𝛽1/2 in modulus.
Using (5.16), we now write the Euler equation as

𝑐(𝛽𝐿−1) 𝑐 (𝐿) 𝑦𝑡 = 𝑎𝑡

The unique solution of the Euler equation that satisfies condition (5.12) is

𝑐(𝐿) 𝑦𝑡 = 𝑐 (𝛽𝐿−1)−1𝑎𝑡 (5.18)

This can be established by using an argument paralleling that in chapter IX of [Sargent, 1987].
To exhibit the solution in a form paralleling that of [Sargent, 1987], we use (5.17) to write (5.18) as

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 = 𝑐−2
0 𝑎𝑡

(1 − 𝛽𝜆1𝐿−1) ⋯ (1 − 𝛽𝜆𝑚𝐿−1) (5.19)

Using partial fractions, we can write the characteristic polynomial on the right side of (5.19) as
𝑚

∑
𝑗=1

𝐴𝑗
1 − 𝜆𝑗 𝛽𝐿−1 where 𝐴𝑗 ∶= 𝑐−2

0
∏𝑖≠𝑗(1 − 𝜆𝑖

𝜆𝑗
)

Then (5.19) can be written

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
1 − 𝜆𝑗 𝛽𝐿−1 𝑎𝑡
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or

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

(𝜆𝑗𝛽)𝑘 𝑎𝑡+𝑘 (5.20)

Equation (5.20) expresses the optimum sequence for 𝑦𝑡 in terms of𝑚 lagged 𝑦’s, and𝑚 weighted infinite geometric sums
of future 𝑎𝑡’s.
Furthermore, (5.20) is the unique solution of the Euler equation that satisfies the initial conditions and condition (5.12).
In effect, condition (5.12) compels us to solve the “unstable” roots of ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) forward (see [Sargent, 1987]).
The step of factoring the polynomial ℎ + 𝑑(𝛽𝑧−1) 𝑑(𝑧) into 𝑐 (𝛽𝑧−1)𝑐 (𝑧), where the zeros of 𝑐 (𝑧) all have modulus
exceeding

√𝛽, is central to solving the problem.
We note two features of the solution (5.20)

• Since |𝜆𝑗| < 1/√𝛽 for all 𝑗, it follows that (𝜆𝑗 𝛽) < √𝛽.
• The assumption that {𝑎𝑡} is of exponential order less than 1/√𝛽 is sufficient to guarantee that the geometric sums
of future 𝑎𝑡’s on the right side of (5.20) converge.

We immediately see that those sums will converge under the weaker condition that {𝑎𝑡} is of exponential order less than
𝜙−1 where 𝜙 = max {𝛽𝜆𝑖, 𝑖 = 1, … , 𝑚}.
Note that with 𝑎𝑡 identically zero, (5.20) implies that in general |𝑦𝑡| eventually grows exponentially at a rate given by
max𝑖 |𝜆𝑖|.
The condition max𝑖 |𝜆𝑖| < 1/√𝛽 guarantees that condition (5.12) is satisfied.
In fact, max𝑖 |𝜆𝑖| < 1/√𝛽 is a necessary condition for (5.12) to hold.
Were (5.12) not satisfied, the objective function would diverge to −∞, implying that the 𝑦𝑡 path could not be optimal.
For example, with 𝑎𝑡 = 0, for all 𝑡, it is easy to describe a naive (nonoptimal) policy for {𝑦𝑡, 𝑡 ≥ 0} that gives a finite
value of (5.17).
We can simply let 𝑦𝑡 = 0 for 𝑡 ≥ 0.
This policy involves at most 𝑚 nonzero values of ℎ𝑦2

𝑡 and [𝑑(𝐿)𝑦𝑡]2, and so yields a finite value of (5.1).
Therefore it is easy to dominate a path that violates (5.12).

5.5 Undiscounted Problems

It is worthwhile focusing on a special case of the LQ problems above: the undiscounted problem that emerges when
𝛽 = 1.
In this case, the Euler equation is

(ℎ + 𝑑(𝐿−1)𝑑(𝐿)) 𝑦𝑡 = 𝑎𝑡

The factorization of the characteristic polynomial (5.16) becomes

(ℎ + 𝑑 (𝑧−1)𝑑(𝑧)) = 𝑐 (𝑧−1) 𝑐 (𝑧)
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where
𝑐 (𝑧) = 𝑐0(1 − 𝜆1𝑧) … (1 − 𝜆𝑚𝑧)

𝑐0 = [(−1)𝑚𝑧0𝑧1 … 𝑧𝑚]
|𝜆𝑗| < 1 for 𝑗 = 1, … , 𝑚

𝜆𝑗 = 1
𝑧𝑗

for 𝑗 = 1, … , 𝑚

𝑧0 = constant
The solution of the problem becomes

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

𝜆𝑘
𝑗 𝑎𝑡+𝑘

5.5.1 Transforming Discounted to Undiscounted Problem

Discounted problems can always be converted into undiscounted problems via a simple transformation.
Consider problem (5.1) with 0 < 𝛽 < 1.
Define the transformed variables

̃𝑎𝑡 = 𝛽𝑡/2𝑎𝑡, ̃𝑦𝑡 = 𝛽𝑡/2𝑦𝑡 (5.21)

Then notice that 𝛽𝑡 [𝑑 (𝐿)𝑦𝑡]2 = [ ̃𝑑 (𝐿) ̃𝑦𝑡]2 with ̃𝑑 (𝐿) = ∑𝑚
𝑗=0

̃𝑑𝑗 𝐿𝑗 and ̃𝑑𝑗 = 𝛽𝑗/2𝑑𝑗.

Then the original criterion function (5.1) is equivalent to

lim
𝑁→∞

𝑁
∑
𝑡=0

{ ̃𝑎𝑡 ̃𝑦𝑡 − 1
2ℎ ̃𝑦2

𝑡 − 1
2[ ̃𝑑 (𝐿) ̃𝑦𝑡]2} (5.22)

which is to be maximized over sequences { ̃𝑦𝑡, 𝑡 = 0, …} subject to ̃𝑦−1, ⋯ , ̃𝑦−𝑚 given and { ̃𝑎𝑡, 𝑡 = 1, …} a known
bounded sequence.

The Euler equation for this problem is [ℎ + ̃𝑑 (𝐿−1) ̃𝑑 (𝐿)] ̃𝑦𝑡 = ̃𝑎𝑡.
The solution is

(1 − �̃�1𝐿) ⋯ (1 − �̃�𝑚𝐿) ̃𝑦𝑡 =
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘

or

̃𝑦𝑡 = ̃𝑓1 ̃𝑦𝑡−1 + ⋯ + ̃𝑓𝑚 ̃𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘, (5.23)

where ̃𝑐 (𝑧−1) ̃𝑐 (𝑧) = ℎ + ̃𝑑 (𝑧−1) ̃𝑑 (𝑧), and where

[(−1)𝑚 ̃𝑧0 ̃𝑧1 … ̃𝑧𝑚]1/2(1 − �̃�1 𝑧) … (1 − �̃�𝑚 𝑧) = ̃𝑐 (𝑧), where |�̃�𝑗| < 1
We leave it to the reader to show that (5.23) implies the equivalent form of the solution

𝑦𝑡 = 𝑓1 𝑦𝑡−1 + ⋯ + 𝑓𝑚 𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

(𝜆𝑗 𝛽)𝑘 𝑎𝑡+𝑘

where

𝑓𝑗 = ̃𝑓𝑗 𝛽−𝑗/2, 𝐴𝑗 = ̃𝐴𝑗, 𝜆𝑗 = �̃�𝑗 𝛽−1/2 (5.24)

The transformations (5.21) and the inverse formulas (5.24) allow us to solve a discounted problem by first solving a related
undiscounted problem.
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5.6 Implementation

Here’s the code that computes solutions to the LQ problem using the methods described above.

import numpy as np
import scipy.stats as spst
import scipy.linalg as la

class LQFilter:

def __init__(self, d, h, y_m, r=None, h_eps=None, β=None):
"""

Parameters
----------

d : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [d_0, d_1, ..., d_m]

h : scalar
Parameter of the objective function (corresponding to the
quadratic term)

y_m : list or numpy.array (1-D or a 2-D column vector)
Initial conditions for y

r : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [r_0, r_1, ..., r_k]
(optional, if not defined -> deterministic problem)

β : scalar
Discount factor (optional, default value is one)

"""

self.h = h
self.d = np.asarray(d)
self.m = self.d.shape[0] - 1

self.y_m = np.asarray(y_m)

if self.m == self.y_m.shape[0]:
self.y_m = self.y_m.reshape(self.m, 1)

else:
raise ValueError("y_m must be of length m = {self.m:d}")

#---------------------------------------------
# Define the coefficients of ϕ upfront
#---------------------------------------------
ϕ = np.zeros(2 * self.m + 1)
for i in range(- self.m, self.m + 1):

ϕ[self.m - i] = np.sum(np.diag(self.d.reshape(self.m + 1, 1) \
@ self.d.reshape(1, self.m + 1),
k=-i
)

)
ϕ[self.m] = ϕ[self.m] + self.h
self.ϕ = ϕ

#-----------------------------------------------------
# If r is given calculate the vector ϕ_r
#-----------------------------------------------------
if r is None:

(continues on next page)
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pass
else:

self.r = np.asarray(r)
self.k = self.r.shape[0] - 1
ϕ_r = np.zeros(2 * self.k + 1)
for i in range(- self.k, self.k + 1):

ϕ_r[self.k - i] = np.sum(np.diag(self.r.reshape(self.k + 1, 1) \
@ self.r.reshape(1, self.k + 1),
k=-i
)

)
if h_eps is None:

self.ϕ_r = ϕ_r
else:

ϕ_r[self.k] = ϕ_r[self.k] + h_eps
self.ϕ_r = ϕ_r

#-----------------------------------------------------
# If β is given, define the transformed variables
#-----------------------------------------------------
if β is None:

self.β = 1
else:

self.β = β
self.d = self.β**(np.arange(self.m + 1)/2) * self.d
self.y_m = self.y_m * (self.β**(- np.arange(1, self.m + 1)/2)) \

.reshape(self.m, 1)

def construct_W_and_Wm(self, N):
"""
This constructs the matrices W and W_m for a given number of periods N
"""

m = self.m
d = self.d

W = np.zeros((N + 1, N + 1))
W_m = np.zeros((N + 1, m))

#---------------------------------------
# Terminal conditions
#---------------------------------------

D_m1 = np.zeros((m + 1, m + 1))
M = np.zeros((m + 1, m))

# (1) Constuct the D_{m+1} matrix using the formula

for j in range(m + 1):
for k in range(j, m + 1):

D_m1[j, k] = d[:j + 1] @ d[k - j: k + 1]

# Make the matrix symmetric
D_m1 = D_m1 + D_m1.T - np.diag(np.diag(D_m1))

# (2) Construct the M matrix using the entries of D_m1

(continues on next page)
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for j in range(m):
for i in range(j + 1, m + 1):

M[i, j] = D_m1[i - j - 1, m]

#----------------------------------------------
# Euler equations for t = 0, 1, ..., N-(m+1)
#----------------------------------------------
ϕ = self.ϕ

W[:(m + 1), :(m + 1)] = D_m1 + self.h * np.eye(m + 1)
W[:(m + 1), (m + 1):(2 * m + 1)] = M

for i, row in enumerate(np.arange(m + 1, N + 1 - m)):
W[row, (i + 1):(2 * m + 2 + i)] = ϕ

for i in range(1, m + 1):
W[N - m + i, -(2 * m + 1 - i):] = ϕ[:-i]

for i in range(m):
W_m[N - i, :(m - i)] = ϕ[(m + 1 + i):]

return W, W_m

def roots_of_characteristic(self):
"""
This function calculates z_0 and the 2m roots of the characteristic
equation associated with the Euler equation (1.7)

Note:
------
numpy.poly1d(roots, True) defines a polynomial using its roots that can
be evaluated at any point. If x_1, x_2, ... , x_m are the roots then

p(x) = (x - x_1)(x - x_2)...(x - x_m)
"""
m = self.m
ϕ = self.ϕ

# Calculate the roots of the 2m-polynomial
roots = np.roots(ϕ)
# Sort the roots according to their length (in descending order)
roots_sorted = roots[np.argsort(abs(roots))[::-1]]

z_0 = ϕ.sum() / np.poly1d(roots, True)(1)
z_1_to_m = roots_sorted[:m] # We need only those outside the unit circle

λ = 1 / z_1_to_m

return z_1_to_m, z_0, λ

def coeffs_of_c(self):
'''
This function computes the coefficients {c_j, j = 0, 1, ..., m} for

c(z) = sum_{j = 0}^{m} c_j z^j

Based on the expression (1.9). The order is

(continues on next page)
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c_coeffs = [c_0, c_1, ..., c_{m-1}, c_m]
'''
z_1_to_m, z_0 = self.roots_of_characteristic()[:2]

c_0 = (z_0 * np.prod(z_1_to_m).real * (- 1)**self.m)**(.5)
c_coeffs = np.poly1d(z_1_to_m, True).c * z_0 / c_0

return c_coeffs[::-1]

def solution(self):
"""
This function calculates {λ_j, j=1,...,m} and {A_j, j=1,...,m}
of the expression (1.15)
"""
λ = self.roots_of_characteristic()[2]
c_0 = self.coeffs_of_c()[-1]

A = np.zeros(self.m, dtype=complex)
for j in range(self.m):

denom = 1 - λ/λ[j]
A[j] = c_0**(-2) / np.prod(denom[np.arange(self.m) != j])

return λ, A

def construct_V(self, N):
'''
This function constructs the covariance matrix for x^N (see section 6)
for a given period N
'''
V = np.zeros((N, N))
ϕ_r = self.ϕ_r

for i in range(N):
for j in range(N):

if abs(i-j) <= self.k:
V[i, j] = ϕ_r[self.k + abs(i-j)]

return V

def simulate_a(self, N):
"""
Assuming that the u's are normal, this method draws a random path
for x^N
"""
V = self.construct_V(N + 1)
d = spst.multivariate_normal(np.zeros(N + 1), V)

return d.rvs()

def predict(self, a_hist, t):
"""
This function implements the prediction formula discussed in section 6 (1.59)
It takes a realization for a^N, and the period in which the prediction is
formed

Output: E[abar | a_t, a_{t-1}, ..., a_1, a_0]

(continues on next page)
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"""

N = np.asarray(a_hist).shape[0] - 1
a_hist = np.asarray(a_hist).reshape(N + 1, 1)
V = self.construct_V(N + 1)

aux_matrix = np.zeros((N + 1, N + 1))
aux_matrix[:(t + 1), :(t + 1)] = np.eye(t + 1)
L = la.cholesky(V).T
Ea_hist = la.inv(L) @ aux_matrix @ L @ a_hist

return Ea_hist

def optimal_y(self, a_hist, t=None):
"""
- if t is NOT given it takes a_hist (list or numpy.array) as a
deterministic a_t

- if t is given, it solves the combined control prediction problem
(section 7)(by default, t == None -> deterministic)

for a given sequence of a_t (either deterministic or a particular
realization), it calculates the optimal y_t sequence using the method
of the lecture

Note:
------
scipy.linalg.lu normalizes L, U so that L has unit diagonal elements
To make things consistent with the lecture, we need an auxiliary
diagonal matrix D which renormalizes L and U
"""

N = np.asarray(a_hist).shape[0] - 1
W, W_m = self.construct_W_and_Wm(N)

L, U = la.lu(W, permute_l=True)
D = np.diag(1 / np.diag(U))
U = D @ U
L = L @ np.diag(1 / np.diag(D))

J = np.fliplr(np.eye(N + 1))

if t is None: # If the problem is deterministic

a_hist = J @ np.asarray(a_hist).reshape(N + 1, 1)

#--------------------------------------------
# Transform the 'a' sequence if β is given
#--------------------------------------------
if self.β != 1:

a_hist = a_hist * (self.β**(np.arange(N + 1) / 2))[::-1] \
.reshape(N + 1, 1)

a_bar = a_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

(continues on next page)
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# Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
# y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

#--------------------------------------------
# Transform the optimal sequence back if β is given
#--------------------------------------------
if self.β != 1:

y_hist = y_hist * (self.β**(- np.arange(-self.m, N + 1)/2)) \
.reshape(N + 1 + self.m, 1)

return y_hist, L, U, y_bar

else: # If the problem is stochastic and we look at it

Ea_hist = self.predict(a_hist, t).reshape(N + 1, 1)
Ea_hist = J @ Ea_hist

a_bar = Ea_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

# Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
# y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

return y_hist, L, U, y_bar

5.6.1 Example

In this application, we’ll have one lag, with

𝑑(𝐿)𝑦𝑡 = 𝛾(𝐼 − 𝐿)𝑦𝑡 = 𝛾(𝑦𝑡 − 𝑦𝑡−1)

Suppose for the moment that 𝛾 = 0.
Then the intertemporal component of the LQ problem disappears, and the agent simply wants to maximize 𝑎𝑡𝑦𝑡 − ℎ𝑦2

𝑡 /2
in each period.
This means that the agent chooses 𝑦𝑡 = 𝑎𝑡/ℎ.
In the following we’ll set ℎ = 1, so that the agent just wants to track the {𝑎𝑡} process.
However, as we increase 𝛾, the agent gives greater weight to a smooth time path.
Hence {𝑦𝑡} evolves as a smoothed version of {𝑎𝑡}.
The {𝑎𝑡} sequence we’ll choose as a stationary cyclic process plus some white noise.
Here’s some code that generates a plot when 𝛾 = 0.8

# Set seed and generate a_t sequence
np.random.seed(123)
n = 100

(continues on next page)
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a_seq = np.sin(np.linspace(0, 5 * np.pi, n)) + 2 + 0.1 * np.random.randn(n)

def plot_simulation(γ=0.8, m=1, h=1, y_m=2):

d = γ * np.asarray([1, -1])
y_m = np.asarray(y_m).reshape(m, 1)

testlq = LQFilter(d, h, y_m)
y_hist, L, U, y = testlq.optimal_y(a_seq)
y = y[::-1] # Reverse y

# Plot simulation results

fig, ax = plt.subplots(figsize=(10, 6))
p_args = {'lw' : 2, 'alpha' : 0.6}
time = range(len(y))
ax.plot(time, a_seq / h, 'k-o', ms=4, lw=2, alpha=0.6, label='$a_t$')
ax.plot(time, y, 'b-o', ms=4, lw=2, alpha=0.6, label='$y_t$')
ax.set(title=rf'Dynamics with $\gamma = {γ}$',

xlabel='Time',
xlim=(0, max(time))
)

ax.legend()
ax.grid()
plt.show()

plot_simulation()

Here’s what happens when we change 𝛾 to 5.0
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plot_simulation(γ=5)

And here’s 𝛾 = 10

plot_simulation(γ=10)
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5.7 Exercises

Exercise 5.7.1
Consider solving a discounted version (𝛽 < 1) of problem (5.1), as follows.
Convert (5.1) to the undiscounted problem (5.22).
Let the solution of (5.22) in feedback form be

(1 − �̃�1𝐿) ⋯ (1 − �̃�𝑚𝐿) ̃𝑦𝑡 =
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘

or

̃𝑦𝑡 = ̃𝑓1 ̃𝑦𝑡−1 + ⋯ + ̃𝑓𝑚 ̃𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘 (5.25)

Here
• ℎ + ̃𝑑(𝑧−1) ̃𝑑(𝑧) = ̃𝑐(𝑧−1) ̃𝑐(𝑧)
• ̃𝑐(𝑧) = [(−1)𝑚 ̃𝑧0 ̃𝑧1 ⋯ ̃𝑧𝑚]1/2(1 − �̃�1𝑧) ⋯ (1 − �̃�𝑚𝑧)

where the ̃𝑧𝑗 are the zeros of ℎ + ̃𝑑(𝑧−1) ̃𝑑(𝑧).
Prove that (5.25) implies that the solution for 𝑦𝑡 in feedback form is

𝑦𝑡 = 𝑓1𝑦𝑡−1 + … + 𝑓𝑚𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

𝛽𝑘𝜆𝑘
𝑗 𝑎𝑡+𝑘
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where 𝑓𝑗 = ̃𝑓𝑗𝛽−𝑗/2, 𝐴𝑗 = ̃𝐴𝑗, and 𝜆𝑗 = �̃�𝑗𝛽−1/2.

Exercise 5.7.2
Solve the optimal control problem, maximize

2
∑
𝑡=0

{𝑎𝑡𝑦𝑡 − 1
2[(1 − 2𝐿)𝑦𝑡]2}

subject to 𝑦−1 given, and {𝑎𝑡} a known bounded sequence.
Express the solution in the “feedback form” (5.20), giving numerical values for the coefficients.
Make sure that the boundary conditions (5.5) are satisfied.

Note: This problem differs from the problem in the text in one important way: instead of ℎ > 0 in (5.1), ℎ = 0. This
has an important influence on the solution.

Exercise 5.7.3
Solve the infinite time-optimal control problem to maximize

lim
𝑁→∞

𝑁
∑
𝑡=0

− 1
2[(1 − 2𝐿)𝑦𝑡]2,

subject to 𝑦−1 given. Prove that the solution is

𝑦𝑡 = 2𝑦𝑡−1 = 2𝑡+1𝑦−1 𝑡 > 0

Exercise 5.7.4
Solve the infinite time problem, to maximize

lim
𝑁→∞

𝑁
∑
𝑡=0

(.0000001) 𝑦2
𝑡 − 1

2[(1 − 2𝐿)𝑦𝑡]2

subject to 𝑦−1 given. Prove that the solution 𝑦𝑡 = 2𝑦𝑡−1 violates condition (5.12), and so is not optimal.
Prove that the optimal solution is approximately 𝑦𝑡 = .5𝑦𝑡−1.
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CHAPTER

SIX

CLASSICAL PREDICTION AND FILTERING WITH LINEAR ALGEBRA

6.1 Overview

This is a sequel to the earlier lecture Classical Control with Linear Algebra.
That lecture used linear algebra – in particular, the LU decomposition – to formulate and solve a class of linear-quadratic
optimal control problems.
In this lecture, we’ll be using a closely related decomposition, the Cholesky decomposition, to solve linear prediction and
filtering problems.
We exploit the useful fact that there is an intimate connection between two superficially different classes of problems:

• deterministic linear-quadratic (LQ) optimal control problems
• linear least squares prediction and filtering problems

The first class of problems involves no randomness, while the second is all about randomness.
Nevertheless, essentially the same mathematics solves both types of problem.
This connection, which is often termed “duality,” is present whether one uses “classical” or “recursive” solution procedures.
In fact, we saw duality at work earlier when we formulated control and prediction problems recursively in lectures LQ
dynamic programming problems, A first look at the Kalman filter, and The permanent income model.
A useful consequence of duality is that

• With every LQ control problem, there is implicitly affiliated a linear least squares prediction or filtering problem.
• With every linear least squares prediction or filtering problem there is implicitly affiliated a LQ control problem.

An understanding of these connections has repeatedly proved useful in cracking interesting applied problems.
For example, Sargent [Sargent, 1987] [chs. IX, XIV] and Hansen and Sargent [Hansen and Sargent, 1980] formulated
and solved control and filtering problems using 𝑧-transform methods.
In this lecture, we begin to investigate these ideas by using mostly elementary linear algebra.
This is the main purpose and focus of the lecture.
However, after showing matrix algebra formulas, we’ll summarize classic infinite-horizon formulas built on 𝑧-transform
and lag operator methods.
And we’ll occasionally refer to some of these formulas from the infinite dimensional problems as we present the finite
time formulas and associated linear algebra.
We’ll start with the following standard import:
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import numpy as np

6.1.1 References

Useful references include [Whittle, 1963], [Hansen and Sargent, 1980], [Orfanidis, 1988], [Athanasios and Pillai, 1991],
and [Muth, 1960].

6.2 Finite Dimensional Prediction

Let (𝑥1, 𝑥2, … , 𝑥𝑇 )′ = 𝑥 be a 𝑇 × 1 vector of random variables with mean 𝔼𝑥 = 0 and covariance matrix 𝔼𝑥𝑥′ = 𝑉 .
Here 𝑉 is a 𝑇 × 𝑇 positive definite matrix.
The 𝑖, 𝑗 component 𝐸𝑥𝑖𝑥𝑗 of 𝑉 is the inner product between 𝑥𝑖 and 𝑥𝑗.
We regard the random variables as being ordered in time so that 𝑥𝑡 is thought of as the value of some economic variable
at time 𝑡.
For example, 𝑥𝑡 could be generated by the random process described by the Wold representation presented in equation
(6.16) in the section below on infinite dimensional prediction and filtering.
In that case, 𝑉𝑖𝑗 is given by the coefficient on 𝑧∣𝑖−𝑗∣ in the expansion of 𝑔𝑥(𝑧) = 𝑑(𝑧) 𝑑(𝑧−1) + ℎ, which equals ℎ +
∑∞

𝑘=0 𝑑𝑘𝑑𝑘+∣𝑖−𝑗∣.
We want to construct 𝑗 step ahead linear least squares predictors of the form

�̂� [𝑥𝑇 |𝑥𝑇 −𝑗, 𝑥𝑇 −𝑗+1, … , 𝑥1]

where �̂� is the linear least squares projection operator.
(Sometimes �̂� is called the wide-sense expectations operator)
To find linear least squares predictors it is helpful first to construct a 𝑇 × 1 vector 𝜀 of random variables that form an
orthonormal basis for the vector of random variables 𝑥.
The key insight here comes from noting that because the covariance matrix 𝑉 of 𝑥 is a positive definite and symmetric,
there exists a (Cholesky) decomposition of 𝑉 such that

𝑉 = 𝐿−1(𝐿−1)′

and

𝐿 𝑉 𝐿′ = 𝐼

where 𝐿 and 𝐿−1 are both lower triangular.
Form the 𝑇 × 1 random vector 𝜀 = 𝐿𝑥.
The random vector 𝜀 is an orthonormal basis for 𝑥 because

• 𝐿 is nonsingular
• 𝔼 𝜀 𝜀′ = 𝐿𝔼𝑥𝑥′𝐿′ = 𝐼
• 𝑥 = 𝐿−1𝜀
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It is enlightening to write out and interpret the equations 𝐿𝑥 = 𝜀 and 𝐿−1𝜀 = 𝑥.
First, we’ll write 𝐿𝑥 = 𝜀

𝐿11𝑥1 = 𝜀1
𝐿21𝑥1 + 𝐿22𝑥2 = 𝜀2

⋮
𝐿𝑇 1 𝑥1 … + 𝐿𝑇 𝑇 𝑥𝑇 = 𝜀𝑇

(6.1)

or
𝑡−1
∑
𝑗=0

𝐿𝑡,𝑡−𝑗 𝑥𝑡−𝑗 = 𝜀𝑡, 𝑡 = 1, 2, … 𝑇 (6.2)

Next, we write 𝐿−1𝜀 = 𝑥

𝑥1 = 𝐿−1
11 𝜀1

𝑥2 = 𝐿−1
22 𝜀2 + 𝐿−1

21 𝜀1
⋮

𝑥𝑇 = 𝐿−1
𝑇 𝑇 𝜀𝑇 + 𝐿−1

𝑇 ,𝑇 −1𝜀𝑇 −1 … + 𝐿−1
𝑇 ,1𝜀1

, (6.3)

or

𝑥𝑡 =
𝑡−1
∑
𝑗=0

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 (6.4)

where 𝐿−1
𝑖,𝑗 denotes the 𝑖, 𝑗 element of 𝐿−1.

From (6.2), it follows that 𝜀𝑡 is in the linear subspace spanned by 𝑥𝑡, 𝑥𝑡−1, … , 𝑥1.
From (6.4) it follows that that 𝑥𝑡 is in the linear subspace spanned by 𝜀𝑡, 𝜀𝑡−1, … , 𝜀1.
Equation (6.2) forms a sequence of autoregressions that for 𝑡 = 1, … , 𝑇 express 𝑥𝑡 as linear functions of 𝑥𝑠, 𝑠 =
1, … , 𝑡 − 1 and a random variable (𝐿𝑡,𝑡)−1𝜀𝑡 that is orthogonal to each componenent of 𝑥𝑠, 𝑠 = 1, … , 𝑡 − 1.
(Here (𝐿𝑡,𝑡)−1 denotes the reciprocal of 𝐿𝑡,𝑡 while 𝐿−1

𝑡,𝑡 denotes the 𝑡, 𝑡 element of 𝐿−1).
The equivalence of the subspaces spanned by 𝜀𝑡, … , 𝜀1 and 𝑥𝑡, … , 𝑥1 means that for 𝑡 − 1 ≥ 𝑚 ≥ 1

�̂�[𝑥𝑡 ∣ 𝑥𝑡−𝑚, 𝑥𝑡−𝑚−1, … , 𝑥1] = �̂�[𝑥𝑡 ∣ 𝜀𝑡−𝑚, 𝜀𝑡−𝑚−1, … , 𝜀1] (6.5)

To proceed, it is useful to drill down and note that for 𝑡 − 1 ≥ 𝑚 ≥ 1 we can rewrite (6.4) in the form of the moving
average representation

𝑥𝑡 =
𝑚−1
∑
𝑗=0

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 +

𝑡−1
∑
𝑗=𝑚

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 (6.6)

Representation (6.6) is an orthogonal decomposition of 𝑥𝑡 into a part ∑𝑡−1
𝑗=𝑚 𝐿−1

𝑡,𝑡−𝑗 𝜀𝑡−𝑗 that lies in the space spanned by
[𝑥𝑡−𝑚, 𝑥𝑡−𝑚+1, … , 𝑥1] and an orthogonal component ∑𝑡−1

𝑗=𝑚 𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 that does not lie in that space but instead in a

linear space knowns as its orthogonal complement.
It follows that

�̂�[𝑥𝑡 ∣ 𝑥𝑡−𝑚, 𝑥𝑡−𝑚−1, … , 𝑥1] =
𝑚−1
∑
𝑗=0

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗
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6.2.1 Implementation

Here’s the code that computes solutions to LQ control and filtering problems using the methods described here and in
Classical Control with Linear Algebra.

import numpy as np
import scipy.stats as spst
import scipy.linalg as la

class LQFilter:

def __init__(self, d, h, y_m, r=None, h_eps=None, β=None):
"""

Parameters
----------

d : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [d_0, d_1, ..., d_m]

h : scalar
Parameter of the objective function (corresponding to the
quadratic term)

y_m : list or numpy.array (1-D or a 2-D column vector)
Initial conditions for y

r : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [r_0, r_1, ..., r_k]
(optional, if not defined -> deterministic problem)

β : scalar
Discount factor (optional, default value is one)

"""

self.h = h
self.d = np.asarray(d)
self.m = self.d.shape[0] - 1

self.y_m = np.asarray(y_m)

if self.m == self.y_m.shape[0]:
self.y_m = self.y_m.reshape(self.m, 1)

else:
raise ValueError("y_m must be of length m = {self.m:d}")

#---------------------------------------------
# Define the coefficients of ϕ upfront
#---------------------------------------------
ϕ = np.zeros(2 * self.m + 1)
for i in range(- self.m, self.m + 1):

ϕ[self.m - i] = np.sum(np.diag(self.d.reshape(self.m + 1, 1) \
@ self.d.reshape(1, self.m + 1),
k=-i
)

)
ϕ[self.m] = ϕ[self.m] + self.h
self.ϕ = ϕ

#-----------------------------------------------------
# If r is given calculate the vector ϕ_r
#-----------------------------------------------------

(continues on next page)
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if r is None:
pass

else:
self.r = np.asarray(r)
self.k = self.r.shape[0] - 1
ϕ_r = np.zeros(2 * self.k + 1)
for i in range(- self.k, self.k + 1):

ϕ_r[self.k - i] = np.sum(np.diag(self.r.reshape(self.k + 1, 1) \
@ self.r.reshape(1, self.k + 1),
k=-i
)

)
if h_eps is None:

self.ϕ_r = ϕ_r
else:

ϕ_r[self.k] = ϕ_r[self.k] + h_eps
self.ϕ_r = ϕ_r

#-----------------------------------------------------
# If β is given, define the transformed variables
#-----------------------------------------------------
if β is None:

self.β = 1
else:

self.β = β
self.d = self.β**(np.arange(self.m + 1)/2) * self.d
self.y_m = self.y_m * (self.β**(- np.arange(1, self.m + 1)/2)) \

.reshape(self.m, 1)

def construct_W_and_Wm(self, N):
"""
This constructs the matrices W and W_m for a given number of periods N
"""

m = self.m
d = self.d

W = np.zeros((N + 1, N + 1))
W_m = np.zeros((N + 1, m))

#---------------------------------------
# Terminal conditions
#---------------------------------------

D_m1 = np.zeros((m + 1, m + 1))
M = np.zeros((m + 1, m))

# (1) Constuct the D_{m+1} matrix using the formula

for j in range(m + 1):
for k in range(j, m + 1):

D_m1[j, k] = d[:j + 1] @ d[k - j: k + 1]

# Make the matrix symmetric
D_m1 = D_m1 + D_m1.T - np.diag(np.diag(D_m1))

(continues on next page)
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# (2) Construct the M matrix using the entries of D_m1

for j in range(m):
for i in range(j + 1, m + 1):

M[i, j] = D_m1[i - j - 1, m]

#----------------------------------------------
# Euler equations for t = 0, 1, ..., N-(m+1)
#----------------------------------------------
ϕ = self.ϕ

W[:(m + 1), :(m + 1)] = D_m1 + self.h * np.eye(m + 1)
W[:(m + 1), (m + 1):(2 * m + 1)] = M

for i, row in enumerate(np.arange(m + 1, N + 1 - m)):
W[row, (i + 1):(2 * m + 2 + i)] = ϕ

for i in range(1, m + 1):
W[N - m + i, -(2 * m + 1 - i):] = ϕ[:-i]

for i in range(m):
W_m[N - i, :(m - i)] = ϕ[(m + 1 + i):]

return W, W_m

def roots_of_characteristic(self):
"""
This function calculates z_0 and the 2m roots of the characteristic
equation associated with the Euler equation (1.7)

Note:
------
numpy.poly1d(roots, True) defines a polynomial using its roots that can
be evaluated at any point. If x_1, x_2, ... , x_m are the roots then

p(x) = (x - x_1)(x - x_2)...(x - x_m)
"""
m = self.m
ϕ = self.ϕ

# Calculate the roots of the 2m-polynomial
roots = np.roots(ϕ)
# Sort the roots according to their length (in descending order)
roots_sorted = roots[np.argsort(abs(roots))[::-1]]

z_0 = ϕ.sum() / np.poly1d(roots, True)(1)
z_1_to_m = roots_sorted[:m] # We need only those outside the unit circle

λ = 1 / z_1_to_m

return z_1_to_m, z_0, λ

def coeffs_of_c(self):
'''
This function computes the coefficients {c_j, j = 0, 1, ..., m} for

c(z) = sum_{j = 0}^{m} c_j z^j

(continues on next page)
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Based on the expression (1.9). The order is
c_coeffs = [c_0, c_1, ..., c_{m-1}, c_m]

'''
z_1_to_m, z_0 = self.roots_of_characteristic()[:2]

c_0 = (z_0 * np.prod(z_1_to_m).real * (- 1)**self.m)**(.5)
c_coeffs = np.poly1d(z_1_to_m, True).c * z_0 / c_0

return c_coeffs[::-1]

def solution(self):
"""
This function calculates {λ_j, j=1,...,m} and {A_j, j=1,...,m}
of the expression (1.15)
"""
λ = self.roots_of_characteristic()[2]
c_0 = self.coeffs_of_c()[-1]

A = np.zeros(self.m, dtype=complex)
for j in range(self.m):

denom = 1 - λ/λ[j]
A[j] = c_0**(-2) / np.prod(denom[np.arange(self.m) != j])

return λ, A

def construct_V(self, N):
'''
This function constructs the covariance matrix for x^N (see section 6)
for a given period N
'''
V = np.zeros((N, N))
ϕ_r = self.ϕ_r

for i in range(N):
for j in range(N):

if abs(i-j) <= self.k:
V[i, j] = ϕ_r[self.k + abs(i-j)]

return V

def simulate_a(self, N):
"""
Assuming that the u's are normal, this method draws a random path
for x^N
"""
V = self.construct_V(N + 1)
d = spst.multivariate_normal(np.zeros(N + 1), V)

return d.rvs()

def predict(self, a_hist, t):
"""
This function implements the prediction formula discussed in section 6 (1.59)
It takes a realization for a^N, and the period in which the prediction is
formed

(continues on next page)
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Output: E[abar | a_t, a_{t-1}, ..., a_1, a_0]
"""

N = np.asarray(a_hist).shape[0] - 1
a_hist = np.asarray(a_hist).reshape(N + 1, 1)
V = self.construct_V(N + 1)

aux_matrix = np.zeros((N + 1, N + 1))
aux_matrix[:(t + 1), :(t + 1)] = np.eye(t + 1)
L = la.cholesky(V).T
Ea_hist = la.inv(L) @ aux_matrix @ L @ a_hist

return Ea_hist

def optimal_y(self, a_hist, t=None):
"""
- if t is NOT given it takes a_hist (list or numpy.array) as a
deterministic a_t

- if t is given, it solves the combined control prediction problem
(section 7)(by default, t == None -> deterministic)

for a given sequence of a_t (either deterministic or a particular
realization), it calculates the optimal y_t sequence using the method
of the lecture

Note:
------
scipy.linalg.lu normalizes L, U so that L has unit diagonal elements
To make things consistent with the lecture, we need an auxiliary
diagonal matrix D which renormalizes L and U
"""

N = np.asarray(a_hist).shape[0] - 1
W, W_m = self.construct_W_and_Wm(N)

L, U = la.lu(W, permute_l=True)
D = np.diag(1 / np.diag(U))
U = D @ U
L = L @ np.diag(1 / np.diag(D))

J = np.fliplr(np.eye(N + 1))

if t is None: # If the problem is deterministic

a_hist = J @ np.asarray(a_hist).reshape(N + 1, 1)

#--------------------------------------------
# Transform the 'a' sequence if β is given
#--------------------------------------------
if self.β != 1:

a_hist = a_hist * (self.β**(np.arange(N + 1) / 2))[::-1] \
.reshape(N + 1, 1)

a_bar = a_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

(continues on next page)
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# Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
# y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

#--------------------------------------------
# Transform the optimal sequence back if β is given
#--------------------------------------------
if self.β != 1:

y_hist = y_hist * (self.β**(- np.arange(-self.m, N + 1)/2)) \
.reshape(N + 1 + self.m, 1)

return y_hist, L, U, y_bar

else: # If the problem is stochastic and we look at it

Ea_hist = self.predict(a_hist, t).reshape(N + 1, 1)
Ea_hist = J @ Ea_hist

a_bar = Ea_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

# Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
# y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

return y_hist, L, U, y_bar

Let’s use this code to tackle two interesting examples.

6.2.2 Example 1

Consider a stochastic process with moving average representation

𝑥𝑡 = (1 − 2𝐿)𝜀𝑡

where 𝜀𝑡 is a serially uncorrelated random process with mean zero and variance unity.
If we were to use the tools associated with infinite dimensional prediction and filtering to be described below, we would use
the Wiener-Kolmogorov formula (6.21) to compute the linear least squares forecasts 𝔼[𝑥𝑡+𝑗 ∣ 𝑥𝑡, 𝑥𝑡−1, …], for 𝑗 = 1, 2.
But we can do everything we want by instead using our finite dimensional tools and setting 𝑑 = 𝑟, generating an instance
of LQFilter, then invoking pertinent methods of LQFilter.

m = 1
y_m = np.asarray([.0]).reshape(m, 1)
d = np.asarray([1, -2])
r = np.asarray([1, -2])
h = 0.0
example = LQFilter(d, h, y_m, r=d)

The Wold representation is computed by example.coeffs_of_c().
Let’s check that it “flips roots” as required
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example.coeffs_of_c()

array([ 2., -1.])

example.roots_of_characteristic()

(array([2.]), -2.0, array([0.5]))

Now let’s form the covariance matrix of a time series vector of length 𝑁 and put it in 𝑉 .
Then we’ll take a Cholesky decomposition of 𝑉 = 𝐿−1𝐿−1 and use it to form the vector of “moving average represen-
tations” 𝑥 = 𝐿−1𝜀 and the vector of “autoregressive representations” 𝐿𝑥 = 𝜀.

V = example.construct_V(N=5)
print(V)

[[ 5. -2. 0. 0. 0.]
[-2. 5. -2. 0. 0.]
[ 0. -2. 5. -2. 0.]
[ 0. 0. -2. 5. -2.]
[ 0. 0. 0. -2. 5.]]

Notice how the lower rows of the “moving average representations” are converging to the appropriate infinite historyWold
representation to be described below when we study infinite horizon-prediction and filtering

Li = np.linalg.cholesky(V)
print(Li)

[[ 2.23606798 0. 0. 0. 0. ]
[-0.89442719 2.04939015 0. 0. 0. ]
[ 0. -0.97590007 2.01186954 0. 0. ]
[ 0. 0. -0.99410024 2.00293902 0. ]
[ 0. 0. 0. -0.99853265 2.000733 ]]

Notice how the lower rows of the “autoregressive representations” are converging to the appropriate infinite-history au-
toregressive representation to be described below when we study infinite horizon-prediction and filtering

L = np.linalg.inv(Li)
print(L)

[[0.4472136 0. 0. 0. 0. ]
[0.19518001 0.48795004 0. 0. 0. ]
[0.09467621 0.23669053 0.49705012 0. 0. ]
[0.04698977 0.11747443 0.2466963 0.49926632 0. ]
[0.02345182 0.05862954 0.12312203 0.24917554 0.49981682]]
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6.2.3 Example 2

Consider a stochastic process 𝑋𝑡 with moving average representation

𝑋𝑡 = (1 −
√

2𝐿2)𝜀𝑡

where 𝜀𝑡 is a serially uncorrelated random process with mean zero and variance unity.
Let’s find a Wold moving average representation for 𝑥𝑡 that will prevail in the infinite-history context to be studied in
detail below.
To do this, we’ll use theWiener-Kolomogorov formula (6.21) presented below to compute the linear least squares forecasts
�̂� [𝑋𝑡+𝑗 ∣ 𝑋𝑡−1, …] for 𝑗 = 1, 2, 3.
We proceed in the same way as in example 1

m = 2
y_m = np.asarray([.0, .0]).reshape(m, 1)
d = np.asarray([1, 0, -np.sqrt(2)])
r = np.asarray([1, 0, -np.sqrt(2)])
h = 0.0
example = LQFilter(d, h, y_m, r=d)
example.coeffs_of_c()

array([ 1.41421356, -0. , -1. ])

example.roots_of_characteristic()

(array([ 1.18920712, -1.18920712]),
-1.4142135623731122,
array([ 0.84089642, -0.84089642]))

V = example.construct_V(N=8)
print(V)

[[ 3. 0. -1.41421356 0. 0. 0.
0. 0. ]

[ 0. 3. 0. -1.41421356 0. 0.
0. 0. ]

[-1.41421356 0. 3. 0. -1.41421356 0.
0. 0. ]

[ 0. -1.41421356 0. 3. 0. -1.41421356
0. 0. ]

[ 0. 0. -1.41421356 0. 3. 0.
-1.41421356 0. ]

[ 0. 0. 0. -1.41421356 0. 3.
0. -1.41421356]

[ 0. 0. 0. 0. -1.41421356 0.
3. 0. ]

[ 0. 0. 0. 0. 0. -1.41421356
0. 3. ]]

Li = np.linalg.cholesky(V)
print(Li[-3:, :])

6.2. Finite Dimensional Prediction 101



Tools and Techniques for Computational Economics

[[ 0. 0. 0. -0.9258201 0. 1.46385011
0. 0. ]

[ 0. 0. 0. 0. -0.96609178 0.
1.43759058 0. ]

[ 0. 0. 0. 0. 0. -0.96609178
0. 1.43759058]]

L = np.linalg.inv(Li)
print(L)

[[0.57735027 0. 0. 0. 0. 0.
0. 0. ]

[0. 0.57735027 0. 0. 0. 0.
0. 0. ]

[0.3086067 0. 0.65465367 0. 0. 0.
0. 0. ]

[0. 0.3086067 0. 0.65465367 0. 0.
0. 0. ]

[0.19518001 0. 0.41403934 0. 0.68313005 0.
0. 0. ]

[0. 0.19518001 0. 0.41403934 0. 0.68313005
0. 0. ]

[0.13116517 0. 0.27824334 0. 0.45907809 0.
0.69560834 0. ]

[0. 0.13116517 0. 0.27824334 0. 0.45907809
0. 0.69560834]]

6.2.4 Prediction

It immediately follows from the “orthogonality principle” of least squares (see [Athanasios and Pillai, 1991] or [Sargent,
1987] [ch. X]) that

�̂�[𝑥𝑡 ∣ 𝑥𝑡−𝑚, 𝑥𝑡−𝑚+1, … 𝑥1] =
𝑡−1
∑
𝑗=𝑚

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗

= [𝐿−1
𝑡,1 𝐿−1

𝑡,2, … , 𝐿−1
𝑡,𝑡−𝑚 0 0 … 0]𝐿 𝑥

(6.7)

This can be interpreted as a finite-dimensional version of the Wiener-Kolmogorov 𝑚-step ahead prediction formula.
We can use (6.7) to represent the linear least squares projection of the vector 𝑥 conditioned on the first 𝑠 observations
[𝑥𝑠, 𝑥𝑠−1 … , 𝑥1].
We have

�̂�[𝑥 ∣ 𝑥𝑠, 𝑥𝑠−1, … , 𝑥1] = 𝐿−1 [𝐼𝑠 0
0 0(𝑡−𝑠)

] 𝐿𝑥 (6.8)

This formula will be convenient in representing the solution of control problems under uncertainty.
Equation (6.4) can be recognized as a finite dimensional version of a moving average representation.
Equation (6.2) can be viewed as a finite dimension version of an autoregressive representation.
Notice that even if the 𝑥𝑡 process is covariance stationary, so that 𝑉 is such that 𝑉𝑖𝑗 depends only on |𝑖−𝑗|, the coefficients
in the moving average representation are time-dependent, there being a different moving average for each 𝑡.
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If 𝑥𝑡 is a covariance stationary process, the last row of 𝐿−1 converges to the coefficients in the Wold moving average
representation for {𝑥𝑡} as 𝑇 → ∞.
Further, if 𝑥𝑡 is covariance stationary, for fixed 𝑘 and 𝑗 > 0, 𝐿−1

𝑇 ,𝑇 −𝑗 converges to 𝐿−1
𝑇 −𝑘,𝑇 −𝑘−𝑗 as 𝑇 → ∞.

That is, the “bottom” rows of 𝐿−1 converge to each other and to the Wold moving average coefficients as 𝑇 → ∞.
This last observation gives one simple and widely-used practical way of forming a finite 𝑇 approximation to a Wold
moving average representation.
First, form the covariance matrix 𝔼𝑥𝑥′ = 𝑉 , then obtain the Cholesky decomposition 𝐿−1𝐿−1′ of 𝑉 , which can be
accomplished quickly on a computer.
The last row of 𝐿−1 gives the approximate Wold moving average coefficients.
This method can readily be generalized to multivariate systems.

6.3 Combined Finite Dimensional Control and Prediction

Consider the finite-dimensional control problem, maximize

𝔼
𝑁

∑
𝑡=0

{𝑎𝑡𝑦𝑡 − 1
2ℎ𝑦2

𝑡 − 1
2[𝑑(𝐿)𝑦𝑡]2} , ℎ > 0

where 𝑑(𝐿) = 𝑑0 + 𝑑1𝐿 + … + 𝑑𝑚𝐿𝑚, 𝐿 is the lag operator, ̄𝑎 = [𝑎𝑁 , 𝑎𝑁−1 … , 𝑎1, 𝑎0]′ a random vector with mean
zero and 𝔼 ̄𝑎 ̄𝑎′ = 𝑉 .
The variables 𝑦−1, … , 𝑦−𝑚 are given.
Maximization is over choices of 𝑦0, 𝑦1 … , 𝑦𝑁 , where 𝑦𝑡 is required to be a linear function of {𝑦𝑡−𝑠−1, 𝑡 + 𝑚 − 1 ≥
0; 𝑎𝑡−𝑠, 𝑡 ≥ 𝑠 ≥ 0}.
We saw in the lecture Classical Control with Linear Algebra that the solution of this problem under certainty could be
represented in the feedback-feedforward form

𝑈 ̄𝑦 = 𝐿−1 ̄𝑎 + 𝐾 ⎡⎢
⎣

𝑦−1
⋮

𝑦−𝑚

⎤⎥
⎦

for some (𝑁 + 1) × 𝑚 matrix 𝐾.

Using a version of formula (6.7), we can express �̂�[ ̄𝑎 ∣ 𝑎𝑠, 𝑎𝑠−1, … , 𝑎0] as

�̂�[ ̄𝑎 ∣ 𝑎𝑠, 𝑎𝑠−1, … , 𝑎0] = ̃𝑈−1 [0 0
0 𝐼(𝑠+1)

] ̃𝑈 ̄𝑎

where 𝐼(𝑠+1) is the (𝑠+1)×(𝑠+1) identity matrix, and 𝑉 = ̃𝑈−1 ̃𝑈−1′ , where ̃𝑈 is the upper triangular Cholesky factor
of the covariance matrix 𝑉 .
(We have reversed the time axis in dating the 𝑎’s relative to earlier)
The time axis can be reversed in representation (6.8) by replacing 𝐿 with 𝐿𝑇 .
The optimal decision rule to use at time 0 ≤ 𝑡 ≤ 𝑁 is then given by the (𝑁 − 𝑡 + 1)th row of

𝑈 ̄𝑦 = 𝐿−1 ̃𝑈−1 [0 0
0 𝐼(𝑡+1)

] ̃𝑈 ̄𝑎 + 𝐾 ⎡⎢
⎣

𝑦−1
⋮

𝑦−𝑚

⎤⎥
⎦

6.3. Combined Finite Dimensional Control and Prediction 103



Tools and Techniques for Computational Economics

6.4 Infinite Horizon Prediction and Filtering Problems

It is instructive to compare the finite-horizon formulas based on linear algebra decompositions of finite-dimensional co-
variance matrices with classic formulas for infinite horizon and infinite history prediction and control problems.
These classic infinite horizon formulas used the mathematics of 𝑧-transforms and lag operators.
We’ll meet interesting lag operator and 𝑧-transform counterparts to our finite horizon matrix formulas.
We pose two related prediction and filtering problems.
We let 𝑌𝑡 be a univariate 𝑚th order moving average, covariance stationary stochastic process,

𝑌𝑡 = 𝑑(𝐿)𝑢𝑡 (6.9)

where 𝑑(𝐿) = ∑𝑚
𝑗=0 𝑑𝑗𝐿𝑗, and 𝑢𝑡 is a serially uncorrelated stationary random process satisfying

𝔼𝑢𝑡 = 0

𝔼𝑢𝑡𝑢𝑠 = {1 if 𝑡 = 𝑠
0 otherwise

(6.10)

We impose no conditions on the zeros of 𝑑(𝑧).
A second covariance stationary process is 𝑋𝑡 given by

𝑋𝑡 = 𝑌𝑡 + 𝜀𝑡 (6.11)

where 𝜀𝑡 is a serially uncorrelated stationary random process with 𝔼𝜀𝑡 = 0 and 𝔼𝜀𝑡𝜀𝑠 = 0 for all distinct 𝑡 and 𝑠.
We also assume that 𝔼𝜀𝑡𝑢𝑠 = 0 for all 𝑡 and 𝑠.
The linear least squares prediction problem is to find the 𝐿2 random variable �̂�𝑡+𝑗 among linear combinations of
{𝑋𝑡, 𝑋𝑡−1, …} that minimizes 𝔼(�̂�𝑡+𝑗 − 𝑋𝑡+𝑗)2.

That is, the problem is to find a 𝛾𝑗(𝐿) = ∑∞
𝑘=0 𝛾𝑗𝑘 𝐿𝑘 such that ∑∞

𝑘=0 |𝛾𝑗𝑘|2 < ∞ and 𝔼[𝛾𝑗 (𝐿)𝑋𝑡 − 𝑋𝑡+𝑗]2 is
minimized.
The linear least squares filtering problem is to find a 𝑏 (𝐿) = ∑∞

𝑗=0 𝑏𝑗 𝐿𝑗 such that∑∞
𝑗=0 |𝑏𝑗|2 < ∞ and 𝔼[𝑏 (𝐿)𝑋𝑡 −

𝑌𝑡]2 is minimized.
Interesting versions of these problems related to the permanent income theory were studied by [Muth, 1960].

6.4.1 Problem Formulation

These problems are solved as follows.
The covariograms of 𝑌 and 𝑋 and their cross covariogram are, respectively,

𝐶𝑋(𝜏) = 𝔼𝑋𝑡𝑋𝑡−𝜏
𝐶𝑌 (𝜏) = 𝔼𝑌𝑡𝑌𝑡−𝜏 𝜏 = 0, ±1, ±2, …

𝐶𝑌 ,𝑋(𝜏) = 𝔼𝑌𝑡𝑋𝑡−𝜏

(6.12)
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The covariance and cross-covariance generating functions are defined as

𝑔𝑋(𝑧) =
∞

∑
𝜏=−∞

𝐶𝑋(𝜏)𝑧𝜏

𝑔𝑌 (𝑧) =
∞

∑
𝜏=−∞

𝐶𝑌 (𝜏)𝑧𝜏

𝑔𝑌 𝑋(𝑧) =
∞

∑
𝜏=−∞

𝐶𝑌 𝑋(𝜏)𝑧𝜏

(6.13)

The generating functions can be computed by using the following facts.
Let 𝑣1𝑡 and 𝑣2𝑡 be two mutually and serially uncorrelated white noises with unit variances.
That is, 𝔼𝑣2

1𝑡 = 𝔼𝑣2
2𝑡 = 1, 𝔼𝑣1𝑡 = 𝔼𝑣2𝑡 = 0, 𝔼𝑣1𝑡𝑣2𝑠 = 0 for all 𝑡 and 𝑠, 𝔼𝑣1𝑡𝑣1𝑡−𝑗 = 𝔼𝑣2𝑡𝑣2𝑡−𝑗 = 0 for all 𝑗 ≠ 0.

Let 𝑥𝑡 and 𝑦𝑡 be two random processes given by

𝑦𝑡 = 𝐴(𝐿)𝑣1𝑡 + 𝐵(𝐿)𝑣2𝑡
𝑥𝑡 = 𝐶(𝐿)𝑣1𝑡 + 𝐷(𝐿)𝑣2𝑡

Then, as shown for example in [Sargent, 1987] [ch. XI], it is true that

𝑔𝑦(𝑧) = 𝐴(𝑧)𝐴(𝑧−1) + 𝐵(𝑧)𝐵(𝑧−1)
𝑔𝑥(𝑧) = 𝐶(𝑧)𝐶(𝑧−1) + 𝐷(𝑧)𝐷(𝑧−1)

𝑔𝑦𝑥(𝑧) = 𝐴(𝑧)𝐶(𝑧−1) + 𝐵(𝑧)𝐷(𝑧−1)
(6.14)

Applying these formulas to (6.9) – (6.12), we have

𝑔𝑌 (𝑧) = 𝑑(𝑧)𝑑(𝑧−1)
𝑔𝑋(𝑧) = 𝑑(𝑧)𝑑(𝑧−1) + ℎ

𝑔𝑌 𝑋(𝑧) = 𝑑(𝑧)𝑑(𝑧−1)
(6.15)

The key step in obtaining solutions to our problems is to factor the covariance generating function 𝑔𝑋(𝑧) of 𝑋.
The solutions of our problems are given by formulas due to Wiener and Kolmogorov.
These formulas utilize the Wold moving average representation of the 𝑋𝑡 process,

𝑋𝑡 = 𝑐 (𝐿) 𝜂𝑡 (6.16)

where 𝑐(𝐿) = ∑𝑚
𝑗=0 𝑐𝑗 𝐿𝑗, with

𝑐0𝜂𝑡 = 𝑋𝑡 − �̂�[𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, …] (6.17)

Here �̂� is the linear least squares projection operator.
Equation (6.17) is the condition that 𝑐0𝜂𝑡 can be the one-step-ahead error in predicting 𝑋𝑡 from its own past values.
Condition (6.17) requires that 𝜂𝑡 lie in the closed linear space spanned by [𝑋𝑡, 𝑋𝑡−1, …].
This will be true if and only if the zeros of 𝑐(𝑧) do not lie inside the unit circle.
It is an implication of (6.17) that 𝜂𝑡 is a serially uncorrelated random process and that normalization can be imposed so
that 𝔼𝜂2

𝑡 = 1.
Consequently, an implication of (6.16) is that the covariance generating function of 𝑋𝑡 can be expressed as

𝑔𝑋(𝑧) = 𝑐 (𝑧) 𝑐 (𝑧−1) (6.18)
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It remains to discuss how 𝑐(𝐿) is to be computed.
Combining (6.14) and (6.18) gives

𝑑(𝑧) 𝑑(𝑧−1) + ℎ = 𝑐 (𝑧) 𝑐 (𝑧−1) (6.19)

Therefore, we have already shown constructively how to factor the covariance generating function 𝑔𝑋(𝑧) = 𝑑(𝑧) 𝑑 (𝑧−1)+
ℎ.
We now introduce the annihilation operator:

[
∞

∑
𝑗=−∞

𝑓𝑗 𝐿𝑗]
+

≡
∞

∑
𝑗=0

𝑓𝑗 𝐿𝑗 (6.20)

In words, [ ]+ means “ignore negative powers of 𝐿”.
We have defined the solution of the prediction problem as �̂�[𝑋𝑡+𝑗|𝑋𝑡, 𝑋𝑡−1, …] = 𝛾𝑗 (𝐿)𝑋𝑡.
Assuming that the roots of 𝑐(𝑧) = 0 all lie outside the unit circle, the Wiener-Kolmogorov formula for 𝛾𝑗(𝐿) holds:

𝛾𝑗 (𝐿) = [𝑐(𝐿)
𝐿𝑗 ]

+
𝑐 (𝐿)−1 (6.21)

We have defined the solution of the filtering problem as �̂�[𝑌𝑡 ∣ 𝑋𝑡, 𝑋𝑡−1, …] = 𝑏(𝐿)𝑋𝑡.
The Wiener-Kolomogorov formula for 𝑏(𝐿) is

𝑏(𝐿) = [𝑔𝑌 𝑋(𝐿)
𝑐(𝐿−1) ]

+
𝑐(𝐿)−1

or

𝑏(𝐿) = [𝑑(𝐿)𝑑(𝐿−1)
𝑐(𝐿−1) ]

+
𝑐(𝐿)−1 (6.22)

Formulas (6.21) and (6.22) are discussed in detail in [Whittle, 1983] and [Sargent, 1987].
The interested reader can there find several examples of the use of these formulas in economics Some classic examples
using these formulas are due to [Muth, 1960].
As an example of the usefulness of formula (6.22), we let 𝑋𝑡 be a stochastic process with Wold moving average repre-
sentation

𝑋𝑡 = 𝑐(𝐿)𝜂𝑡

where 𝔼𝜂2
𝑡 = 1, and 𝑐0𝜂𝑡 = 𝑋𝑡 − �̂�[𝑋𝑡|𝑋𝑡−1, …], 𝑐(𝐿) = ∑𝑚

𝑗=0 𝑐𝑗𝐿.
Suppose that at time 𝑡, we wish to predict a geometric sum of future 𝑋’s, namely

𝑦𝑡 ≡
∞

∑
𝑗=0

𝛿𝑗𝑋𝑡+𝑗 = 1
1 − 𝛿𝐿−1 𝑋𝑡

given knowledge of 𝑋𝑡, 𝑋𝑡−1, ….
We shall use (6.22) to obtain the answer.
Using the standard formulas (6.14), we have that

𝑔𝑦𝑥(𝑧) = (1 − 𝛿𝑧−1)𝑐(𝑧)𝑐(𝑧−1)
𝑔𝑥(𝑧) = 𝑐(𝑧)𝑐(𝑧−1)
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Then (6.22) becomes

𝑏(𝐿) = [ 𝑐(𝐿)
1 − 𝛿𝐿−1 ]

+
𝑐(𝐿)−1 (6.23)

In order to evaluate the term in the annihilation operator, we use the following result from [Hansen and Sargent, 1980].
Proposition Let

• 𝑔(𝑧) = ∑∞
𝑗=0 𝑔𝑗 𝑧𝑗 where ∑∞

𝑗=0 |𝑔𝑗|2 < +∞.

• ℎ (𝑧−1) = (1 − 𝛿1𝑧−1) … (1 − 𝛿𝑛𝑧−1), where |𝛿𝑗| < 1, for 𝑗 = 1, … , 𝑛.
Then

[ 𝑔(𝑧)
ℎ(𝑧−1)]

+
= 𝑔(𝑧)

ℎ(𝑧−1) −
𝑛

∑
𝑗=1

𝛿𝑗𝑔(𝛿𝑗)
∏𝑛

𝑘=1
𝑘≠𝑗

(𝛿𝑗 − 𝛿𝑘) ( 1
𝑧 − 𝛿𝑗

) (6.24)

and, alternatively,

[ 𝑔(𝑧)
ℎ(𝑧−1)]

+
=

𝑛
∑
𝑗=1

𝐵𝑗 (𝑧𝑔(𝑧) − 𝛿𝑗𝑔(𝛿𝑗)
𝑧 − 𝛿𝑗

) (6.25)

where 𝐵𝑗 = 1/ ∏𝑛
𝑘=1
𝑘+𝑗

(1 − 𝛿𝑘/𝛿𝑗).

Applying formula (6.25) of the proposition to evaluating (6.23) with 𝑔(𝑧) = 𝑐(𝑧) and ℎ(𝑧−1) = 1 − 𝛿𝑧−1 gives

𝑏(𝐿) = [𝐿𝑐(𝐿) − 𝛿𝑐(𝛿)
𝐿 − 𝛿 ] 𝑐(𝐿)−1

or

𝑏(𝐿) = [1 − 𝛿𝑐(𝛿)𝐿−1𝑐(𝐿)−1

1 − 𝛿𝐿−1 ]

Thus, we have

�̂� [
∞

∑
𝑗=0

𝛿𝑗𝑋𝑡+𝑗|𝑋𝑡, 𝑥𝑡−1, …] = [1 − 𝛿𝑐(𝛿)𝐿−1𝑐(𝐿)−1

1 − 𝛿𝐿−1 ] 𝑋𝑡 (6.26)

This formula is useful in solving stochastic versions of problem 1 of lecture Classical Control with Linear Algebra in which
the randomness emerges because {𝑎𝑡} is a stochastic process.
The problem is to maximize

𝔼0 lim
𝑁→∞

𝑁
∑
𝑡−0

𝛽𝑡 [𝑎𝑡 𝑦𝑡 − 1
2 ℎ𝑦2

𝑡 − 1
2 [𝑑(𝐿)𝑦𝑡]2] (6.27)

where 𝔼𝑡 is mathematical expectation conditioned on information known at 𝑡, and where {𝑎𝑡} is a covariance stationary
stochastic process with Wold moving average representation

𝑎𝑡 = 𝑐(𝐿) 𝜂𝑡

where

𝑐(𝐿) =
�̃�

∑
𝑗=0

𝑐𝑗𝐿𝑗
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and

𝜂𝑡 = 𝑎𝑡 − �̂�[𝑎𝑡|𝑎𝑡−1, …]

The problem is to maximize (6.27) with respect to a contingency plan expressing 𝑦𝑡 as a function of information known
at 𝑡, which is assumed to be (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑎𝑡, 𝑎𝑡−1, …).
The solution of this problem can be achieved in two steps.
First, ignoring the uncertainty, we can solve the problem assuming that {𝑎𝑡} is a known sequence.
The solution is, from above,

𝑐(𝐿)𝑦𝑡 = 𝑐(𝛽𝐿−1)−1𝑎𝑡

or

(1 − 𝜆1𝐿) … (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

(𝜆𝑗𝛽)𝑘 𝑎𝑡+𝑘 (6.28)

Second, the solution of the problem under uncertainty is obtained by replacing the terms on the right-hand side of the
above expressions with their linear least squares predictors.
Using (6.26) and (6.28), we have the following solution

(1 − 𝜆1𝐿) … (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗 [1 − 𝛽𝜆𝑗 𝑐(𝛽𝜆𝑗)𝐿−1𝑐(𝐿)−1

1 − 𝛽𝜆𝑗𝐿−1 ] 𝑎𝑡

Blaschke factors
The following is a useful piece of mathematics underlying “root flipping”.
Let 𝜋(𝑧) = ∑𝑚

𝑗=0 𝜋𝑗𝑧𝑗 and let 𝑧1, … , 𝑧𝑘 be the zeros of 𝜋(𝑧) that are inside the unit circle, 𝑘 < 𝑚.

Then define

𝜃(𝑧) = 𝜋(𝑧)((𝑧1𝑧 − 1)
(𝑧 − 𝑧1) )((𝑧2𝑧 − 1)

(𝑧 − 𝑧2) ) … ((𝑧𝑘𝑧 − 1)
(𝑧 − 𝑧𝑘) )

The term multiplying 𝜋(𝑧) is termed a “Blaschke factor”.
Then it can be proved directly that

𝜃(𝑧−1)𝜃(𝑧) = 𝜋(𝑧−1)𝜋(𝑧)

and that the zeros of 𝜃(𝑧) are not inside the unit circle.

6.5 Exercises

Exercise 6.5.1
Let 𝑌𝑡 = (1 − 2𝐿)𝑢𝑡 where 𝑢𝑡 is a mean zero white noise with 𝔼𝑢2

𝑡 = 1. Let

𝑋𝑡 = 𝑌𝑡 + 𝜀𝑡

where 𝜀𝑡 is a serially uncorrelated white noise with 𝔼𝜀2
𝑡 = 9, and 𝔼𝜀𝑡𝑢𝑠 = 0 for all 𝑡 and 𝑠.
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Find the Wold moving average representation for 𝑋𝑡.
Find a formula for the 𝐴1𝑗’s in

𝔼𝑋𝑡+1 ∣ 𝑋𝑡, 𝑋𝑡−1, … =
∞

∑
𝑗=0

𝐴1𝑗𝑋𝑡−𝑗

Find a formula for the 𝐴2𝑗’s in

�̂�𝑋𝑡+2 ∣ 𝑋𝑡, 𝑋𝑡−1, … =
∞

∑
𝑗=0

𝐴2𝑗𝑋𝑡−𝑗

Exercise 6.5.2
Multivariable Prediction: Let 𝑌𝑡 be an (𝑛 × 1) vector stochastic process with moving average representation

𝑌𝑡 = 𝐷(𝐿)𝑈𝑡

where 𝐷(𝐿) = ∑𝑚
𝑗=0 𝐷𝑗𝐿𝐽 , 𝐷𝑗 an 𝑛 × 𝑛 matrix, 𝑈𝑡 an (𝑛 × 1) vector white noise with 𝔼𝑈𝑡 = 0 for all 𝑡, 𝔼𝑈𝑡𝑈 ′

𝑠 = 0
for all 𝑠 ≠ 𝑡, and 𝔼𝑈𝑡𝑈 ′

𝑡 = 𝐼 for all 𝑡.
Let 𝜀𝑡 be an 𝑛 × 1 vector white noise with mean 0 and contemporaneous covariance matrix 𝐻 , where 𝐻 is a positive
definite matrix.
Let 𝑋𝑡 = 𝑌𝑡 + 𝜀𝑡.
Define the covariograms as 𝐶𝑋(𝜏) = 𝔼𝑋𝑡𝑋′

𝑡−𝜏 , 𝐶𝑌 (𝜏) = 𝔼𝑌𝑡𝑌 ′
𝑡−𝜏 , 𝐶𝑌 𝑋(𝜏) = 𝔼𝑌𝑡𝑋′

𝑡−𝜏 .
Then define the matrix covariance generating function, as in (5.21), only interpret all the objects in (5.21) as matrices.
Show that the covariance generating functions are given by

𝑔𝑦(𝑧) = 𝐷(𝑧)𝐷(𝑧−1)′

𝑔𝑋(𝑧) = 𝐷(𝑧)𝐷(𝑧−1)′ + 𝐻
𝑔𝑌 𝑋(𝑧) = 𝐷(𝑧)𝐷(𝑧−1)′

A factorization of 𝑔𝑋(𝑧) can be found (see [Rozanov, 1967] or [Whittle, 1983]) of the form

𝐷(𝑧)𝐷(𝑧−1)′ + 𝐻 = 𝐶(𝑧)𝐶(𝑧−1)′, 𝐶(𝑧) =
𝑚

∑
𝑗=0

𝐶𝑗𝑧𝑗

where the zeros of |𝐶(𝑧)| do not lie inside the unit circle.
A vector Wold moving average representation of 𝑋𝑡 is then

𝑋𝑡 = 𝐶(𝐿)𝜂𝑡

where 𝜂𝑡 is an (𝑛 × 1) vector white noise that is “fundamental” for 𝑋𝑡.

That is, 𝑋𝑡 − �̂� [𝑋𝑡 ∣ 𝑋𝑡−1, 𝑋𝑡−2 …] = 𝐶0 𝜂𝑡.
The optimum predictor of 𝑋𝑡+𝑗 is

�̂� [𝑋𝑡+𝑗 ∣ 𝑋𝑡, 𝑋𝑡−1, …] = [𝐶(𝐿)
𝐿𝑗 ]

+
𝜂𝑡

If 𝐶(𝐿) is invertible, i.e., if the zeros of det 𝐶(𝑧) lie strictly outside the unit circle, then this formula can be written

�̂� [𝑋𝑡+𝑗 ∣ 𝑋𝑡, 𝑋𝑡−1, …] = [𝐶(𝐿)
𝐿𝐽 ]

+
𝐶(𝐿)−1 𝑋𝑡
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CHAPTER

SEVEN

LINEAR PROGRAMMING

7.1 Overview

Linear programming problems either maximize or minimize a linear objective function subject to a set of linear equality
and/or inequality constraints.
Linear programs come in pairs:

• an original primal problem, and
• an associated dual problem.

If a primal problem involvesmaximization, the dual problem involves minimization.
If a primal problem involvesminimization, the dual problem involves maximization.
We provide a standard form of a linear program and methods to transform other forms of linear programming problems
into a standard form.
We tell how to solve a linear programming problem using SciPy.
We describe the important concept of complementary slackness and how it relates to the dual problem.
Let’s start with some standard imports.

import numpy as np
from scipy.optimize import linprog
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon

7.2 Objective Function and Constraints

We want to minimize a cost function 𝑐′𝑥 = ∑𝑛
𝑖=1 𝑐𝑖𝑥𝑖 over feasible values of 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)′.

Here
• 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛)′ is a unit cost vector, and
• 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)′ is a vector of decision variables

Decision variables are restricted to satisfy a set of linear equality and/or inequality constraints.
We describe the constraints with the following collections of 𝑛-dimensional vectors 𝑎𝑖 and scalars 𝑏𝑖 and associated sets
indexing the equality and inequality constraints:

• 𝑎𝑖 for 𝑖 ∈ 𝑀𝑖, where 𝑀1, 𝑀2, 𝑀3 are each sets of indexes
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and a collection of scalers
• 𝑏𝑖 for 𝑖 ∈ 𝑁𝑖, where 𝑁1, 𝑁2, 𝑁3 are each sets of indexes.

A linear programming can be stated as [Bertsimas, 1997]:

min
𝑥

𝑐′𝑥
subject to 𝑎′

𝑖𝑥 ≥ 𝑏𝑖, 𝑖 ∈ 𝑀1
𝑎′

𝑖𝑥 ≤ 𝑏𝑖, 𝑖 ∈ 𝑀2
𝑎′

𝑖𝑥 = 𝑏𝑖, 𝑖 ∈ 𝑀3
𝑥𝑗 ≥ 0, 𝑗 ∈ 𝑁1
𝑥𝑗 ≤ 0, 𝑗 ∈ 𝑁2
𝑥𝑗 unrestricted, 𝑗 ∈ 𝑁3

(7.1)

A vector 𝑥 that satisfies all of the constraints is called a feasible solution.
A collection of all feasible solutions is called a feasible set.
A feasible solution 𝑥 that minimizes the cost function is called an optimal solution.
The corresponding value of cost function 𝑐′𝑥 is called the optimal value.
If the feasible set is empty, we say that solving the linear programming problem is infeasible.
If, for any 𝐾 ∈ ℝ, there exists a feasible solution 𝑥 such that 𝑐′𝑥 < 𝐾, we say that the problem is unbounded or
equivalently that the optimal value is −∞.

7.3 Example 1: Production Problem

This example was created by [Bertsimas, 1997]
Suppose that a factory can produce two goods called Product 1 and Product 2.
To produce each product requires both material and labor.
Selling each product generates revenue.
Required per unit material and labor inputs and revenues are shown in table below:

Product 1 Product 2

Material 2 5
Labor 4 2
Revenue 3 4

30 units of material and 20 units of labor available.
A firm’s problem is to construct a production plan that uses its 30 units of materials and 20 unites of labor to maximize
its revenue.
Let 𝑥𝑖 denote the quantity of Product 𝑖 that the firm produces.
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This problem can be formulated as:

max
𝑥1,𝑥2

𝑧 = 3𝑥1 + 4𝑥2

subject to 2𝑥1 + 5𝑥2 ≤ 30
4𝑥1 + 2𝑥2 ≤ 20
𝑥1, 𝑥2 ≥ 0

The following graph illustrates the firm’s constraints and iso-revenue lines.

fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()

# Draw constraint lines
ax.hlines(0, -1, 17.5)
ax.vlines(0, -1, 12)
ax.plot(np.linspace(-1, 17.5, 100), 6-0.4*np.linspace(-1, 17.5, 100), color="c")
ax.plot(np.linspace(-1, 5.5, 100), 10-2*np.linspace(-1, 5.5, 100), color="c")
ax.text(1.5, 8, "$2x_1 + 5x_2 \leq 30$", size=12)
ax.text(10, 2.5, "$4x_1 + 2x_2 \leq 20$", size=12)
ax.text(-2, 2, "$x_2 \geq 0$", size=12)
ax.text(2.5, -0.7, "$x_1 \geq 0$", size=12)

# Draw the feasible region
feasible_set = Polygon(np.array([[0, 0],

[0, 6],
[2.5, 5],
[5, 0]]),

color="cyan")
ax.add_patch(feasible_set)

# Draw the objective function
ax.plot(np.linspace(-1, 5.5, 100), 3.875-0.75*np.linspace(-1, 5.5, 100), color="orange

↪")
ax.plot(np.linspace(-1, 5.5, 100), 5.375-0.75*np.linspace(-1, 5.5, 100), color="orange

↪")
ax.plot(np.linspace(-1, 5.5, 100), 6.875-0.75*np.linspace(-1, 5.5, 100), color="orange

↪")
ax.arrow(-1.6, 5, 0, 2, width = 0.05, head_width=0.2, head_length=0.5, color="orange")
ax.text(5.7, 1, "$z = 3x_1 + 4x_2$", size=12)

# Draw the optimal solution
ax.plot(2.5, 5, "*", color="black")
ax.text(2.7, 5.2, "Optimal Solution", size=12)

plt.show()
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The blue region is the feasible set within which all constraints are satisfied.
Parallel orange lines are iso-revenue lines.
The firm’s objective is to find the parallel orange lines to the upper boundary of the feasible set.
The intersection of the feasible set and the highest orange line delineates the optimal set.
In this example, the optimal set is the point (2.5, 5).

7.4 Example 2: Investment Problem

We now consider a problem posed and solved by [Hu, 2018].
A mutual fund has $100, 000 to be invested over a three year horizon.
Three investment options are available:

1. Annuity: the fund can pay a same amount of new capital at the beginning of each of three years and receive a
payoff of 130% of total capital invested at the end of the third year. Once the mutual fund decides to invest in
this annuity, it has to keep investing in all subsequent years in the three year horizon.

2. Bank account: the fund can deposit any amount into a bank at the beginning of each year and receive its capital
plus 6% interest at the end of that year. In addition, the mutual fund is permitted to borrow no more than $20,000
at the beginning of each year and is asked to pay back the amount borrowed plus 6% interest at the end of the year.
The mutual fund can choose whether to deposit or borrow at the beginning of each year.
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3. Corporate bond: At the beginning of the second year, a corporate bond becomes available. The fund can buy an
amount that is no more than $50,000 of this bond at the beginning of the second year and at the end of the third
year receive a payout of 130% of the amount invested in the bond.

The mutual fund’s objective is to maximize total payout that it owns at the end of the third year.
We can formulate this as a linear programming problem.
Let 𝑥1 be the amount of put in the annuity, 𝑥2, 𝑥3, 𝑥4 be bank deposit balances at the beginning of the three years, and
𝑥5 be the amount invested in the corporate bond.
When 𝑥2, 𝑥3, 𝑥4 are negative, it means that the mutual fund has borrowed from bank.
The table below shows the mutual fund’s decision variables together with the timing protocol described above:

Year 1 Year 2 Year 3

Annuity 𝑥1 𝑥1 𝑥1
Bank account 𝑥2 𝑥3 𝑥4
Corporate bond 0 𝑥5 0

The mutual fund’s decision making proceeds according to the following timing protocol:
1. At the beginning of the first year, the mutual fund decides how much to invest in the annuity and how much to

deposit in the bank. This decision is subject to the constraint:

𝑥1 + 𝑥2 = 100, 000

2. At the beginning of the second year, the mutual fund has a bank balance of 1.06𝑥2. It must keep 𝑥1 in the annuity.
It can choose to put 𝑥5 into the corporate bond, and put 𝑥3 in the bank. These decisions are restricted by

𝑥1 + 𝑥5 = 1.06𝑥2 − 𝑥3

3. At the beginning of the third year, the mutual fund has a bank account balance equal to 1.06𝑥3. It must again
invest 𝑥1 in the annuity, leaving it with a bank account balance equal to 𝑥4. This situation is summarized by the
restriction:

𝑥1 = 1.06𝑥3 − 𝑥4

The mutual fund’s objective function, i.e., its wealth at the end of the third year is:

1.30 ⋅ 3𝑥1 + 1.06𝑥4 + 1.30𝑥5

Thus, the mutual fund confronts the linear program:

max
𝑥

1.30 ⋅ 3𝑥1 + 1.06𝑥4 + 1.30𝑥5

subject to 𝑥1 + 𝑥2 = 100, 000
𝑥1 − 1.06𝑥2 + 𝑥3 + 𝑥5 = 0
𝑥1 − 1.06𝑥3 + 𝑥4 = 0
𝑥2 ≥ −20, 000
𝑥3 ≥ −20, 000
𝑥4 ≥ −20, 000
𝑥5 ≤ 50, 000
𝑥𝑗 ≥ 0, 𝑗 = 1, 5
𝑥𝑗 unrestricted, 𝑗 = 2, 3, 4
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7.5 Standard Form

For purposes of
• unifying linear programs that are initially stated in superficially different forms, and
• having a form that is convenient to put into black-box software packages,

it is useful to devote some effort to describe a standard form.
Our standard form is:

min
𝑥

𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛

subject to 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚
𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0

Let

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

, 𝑏 =
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦

, 𝑐 =
⎡
⎢⎢
⎣

𝑐1
𝑐2
⋮

𝑐𝑛

⎤
⎥⎥
⎦

, 𝑥 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

.

The standard form LP problem can be expressed concisely as:

min
𝑥

𝑐′𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 >= 0
(7.2)

Here, 𝐴𝑥 = 𝑏 means that the 𝑖-th entry of 𝐴𝑥 equals the 𝑖-th entry of 𝑏 for every 𝑖.
Similarly, 𝑥 >= 0 means that 𝑥𝑗 is greater than 0 for every 𝑗.

7.5.1 Useful Transformations

It is useful to know how to transform a problem that initially is not stated in the standard form into one that is.
By deploying the following steps, any linear programming problem can be transformed into an equivalent standard form
linear programming problem.

1. Objective Function: If a problem is originally a constrained maximization problem, we can construct a new
objective function that is the additive inverse of the original objective function. The transformed problem is then a
minimization problem.

2. Decision Variables: Given a variable 𝑥𝑗 satisfying 𝑥𝑗 ≤ 0, we can introduce a new variable 𝑥′
𝑗 = −𝑥𝑗 and

subsitute it into original problem. Given a free variable 𝑥𝑖 with no restriction on its sign, we can introduce two new
variables 𝑥+

𝑗 and 𝑥−
𝑗 satisfying 𝑥+

𝑗 , 𝑥−
𝑗 ≥ 0 and replace 𝑥𝑗 by 𝑥+

𝑗 − 𝑥−
𝑗 .

3. Inequality constraints: Given an inequality constraint ∑𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≤ 0, we can introduce a new variable 𝑠𝑖,

called a slack variable that satisfies 𝑠𝑖 ≥ 0 and replace the original constraint by ∑𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 + 𝑠𝑖 = 0.

Let’s apply the above steps to the two examples described above.
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7.5.2 Example 1: Production Problem

The original problem is:

max
𝑥1,𝑥2

3𝑥1 + 4𝑥2

subject to 2𝑥1 + 5𝑥2 ≤ 30
4𝑥1 + 2𝑥2 ≤ 20
𝑥1, 𝑥2 ≥ 0

This problem is equivalent to the following problem with a standard form:

min
𝑥1,𝑥2

− (3𝑥1 + 4𝑥2)

subject to 2𝑥1 + 5𝑥2 + 𝑠1 = 30
4𝑥1 + 2𝑥2 + 𝑠2 = 20
𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0

7.5.3 Example 2: Investment Problem

The original problem is:

max
𝑥

1.30 ⋅ 3𝑥1 + 1.06𝑥4 + 1.30𝑥5

subject to 𝑥1 + 𝑥2 = 100, 000
𝑥1 − 1.06𝑥2 + 𝑥3 + 𝑥5 = 0
𝑥1 − 1.06𝑥3 + 𝑥4 = 0
𝑥2 ≥ −20, 000
𝑥3 ≥ −20, 000
𝑥4 ≥ −20, 000
𝑥5 ≤ 50, 000
𝑥𝑗 ≥ 0, 𝑗 = 1, 5
𝑥𝑗 unrestricted, 𝑗 = 2, 3, 4

This problem is equivalent to the following problem with a standard form:

min
𝑥

− (1.30 ⋅ 3𝑥1 + 1.06𝑥+
4 − 1.06𝑥−

4 + 1.30𝑥5)
subject to 𝑥1 + 𝑥+

2 − 𝑥−
2 = 100, 000

𝑥1 − 1.06(𝑥+
2 − 𝑥−

2 ) + 𝑥+
3 − 𝑥−

3 + 𝑥5 = 0
𝑥1 − 1.06(𝑥+

3 − 𝑥−
3 ) + 𝑥+

4 − 𝑥−
4 = 0

𝑥−
2 − 𝑥+

2 + 𝑠1 = 20, 000
𝑥−

3 − 𝑥+
3 + 𝑠2 = 20, 000

𝑥−
4 − 𝑥+

4 + 𝑠3 = 20, 000
𝑥5 + 𝑠4 = 50, 000
𝑥𝑗 ≥ 0, 𝑗 = 1, 5
𝑥+

𝑗 , 𝑥−
𝑗 ≥ 0, 𝑗 = 2, 3, 4

𝑠𝑗 ≥ 0, 𝑗 = 1, 2, 3, 4
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7.6 Computations

The package scipy.optimize provides a function linprog to solve linear programming problems with a form below:

min
𝑥

𝑐′𝑥
subject to 𝐴𝑢𝑏𝑥 ≤ 𝑏𝑢𝑏

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞
𝑙 ≤ 𝑥 ≤ 𝑢

Note: By default 𝑙 = 0 and 𝑢 = None unless explicitly specified with the argument ‘bounds’.

Let’s apply this great Python tool to solve our two example problems.

7.6.1 Example 1: Production Problem

The problem is:

max
𝑥1,𝑥2

3𝑥1 + 4𝑥2

subject to 2𝑥1 + 5𝑥2 ≤ 30
4𝑥1 + 2𝑥2 ≤ 20
𝑥1, 𝑥2 ≥ 0

# Construct parameters
c_ex1 = np.array([3, 4])

# Inequality constraints
A_ex1 = np.array([[2, 5],

[4, 2]])
b_ex1 = np.array([30,20])

# Solve the problem
# we put a negative sign on the objective as linprog does minimization
res_ex1 = linprog(-c_ex1, A_ub=A_ex1, b_ub=b_ex1)

res_ex1

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: -27.5
x: [ 2.500e+00 5.000e+00]

nit: 2
lower: residual: [ 2.500e+00 5.000e+00]

marginals: [ 0.000e+00 0.000e+00]
upper: residual: [ inf inf]

marginals: [ 0.000e+00 0.000e+00]
eqlin: residual: []

marginals: []
ineqlin: residual: [ 0.000e+00 0.000e+00]

marginals: [-6.250e-01 -4.375e-01]

(continues on next page)
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mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

The optimal plan tells the factory to produce 2.5 units of Product 1 and 5 units of Product 2; that generates a maximizing
value of revenue of 27.5.
We are using the linprog function as a black box.
Inside it, Python first transforms the problem into standard form.
To do that, for each inequality constraint it generates one slack variable.
Here the vector of slack variables is a two-dimensional NumPy array that equals 𝑏𝑢𝑏 − 𝐴𝑢𝑏𝑥.
See the official documentation for more details.

Note: This problem is to maximize the objective, so that we need to put a minus sign in front of parameter vector c.

7.6.2 Example 2: Investment Problem

The problem is:

max
𝑥

1.30 ⋅ 3𝑥1 + 1.06𝑥4 + 1.30𝑥5

subject to 𝑥1 + 𝑥2 = 100, 000
𝑥1 − 1.06𝑥2 + 𝑥3 + 𝑥5 = 0
𝑥1 − 1.06𝑥3 + 𝑥4 = 0
𝑥2 ≥ −20, 000
𝑥3 ≥ −20, 000
𝑥4 ≥ −20, 000
𝑥5 ≤ 50, 000
𝑥𝑗 ≥ 0, 𝑗 = 1, 5
𝑥𝑗 unrestricted, 𝑗 = 2, 3, 4

Let’s solve this problem using linprog.

# Construct parameters
rate = 1.06

# Objective function parameters
c_ex2 = np.array([1.30*3, 0, 0, 1.06, 1.30])

# Inequality constraints
A_ex2 = np.array([[1, 1, 0, 0, 0],

[1, -rate, 1, 0, 1],
[1, 0, -rate, 1, 0]])

b_ex2 = np.array([100000, 0, 0])

# Bounds on decision variables
bounds_ex2 = [( 0, None),

(-20000, None),

(continues on next page)
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(-20000, None),
(-20000, None),
( 0, 50000)]

# Solve the problem
res_ex2 = linprog(-c_ex2, A_eq=A_ex2, b_eq=b_ex2,

bounds=bounds_ex2)

res_ex2

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: -141018.24349792697
x: [ 2.493e+04 7.507e+04 4.649e+03 -2.000e+04 5.000e+04]

nit: 0
lower: residual: [ 2.493e+04 9.507e+04 2.465e+04 0.000e+00

5.000e+04]
marginals: [ 0.000e+00 0.000e+00 0.000e+00 1.650e-01

0.000e+00]
upper: residual: [ inf inf inf inf

0.000e+00]
marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

-1.470e-03]
eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00]

marginals: [-1.376e+00 -1.299e+00 -1.225e+00]
ineqlin: residual: []

marginals: []
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

Python tells us that the best investment strategy is:
1. At the beginning of the first year, the mutual fund should buy $24, 927.75 of the annuity. Its bank account balance

should be $75, 072.25.
2. At the beginning of the second year, the mutual fund should buy $50, 000 of the corporate bond and keep invest

in the annuity. Its bank account balance should be $4, 648.83.
3. At the beginning of the third year, the mutual fund should borrow $20, 000 from the bank and invest in the annuity.
4. At the end of the third year, the mutual fund will get payouts from the annuity and corporate bond and repay its

loan from the bank. At the end it will own $141018.24, so that it’s total net rate of return over the three periods is
41.02%.
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7.7 Duality

Associated with a linear programming of form (7.1) with 𝑚 constraints and 𝑛 decision variables, there is an dual linear
programming problem that takes the form (please see [Bertsimas, 1997])

max
𝑝

𝑏′𝑝

subject to 𝑝𝑖 ≥ 0, 𝑖 ∈ 𝑀1
𝑝𝑖 ≤ 0, 𝑖 ∈ 𝑀2
𝑝𝑖 unrestricted, 𝑖 ∈ 𝑀3
𝐴′

𝑗𝑝 ≤ 𝑐𝑗, 𝑗 ∈ 𝑁1
𝐴′

𝑗𝑝 ≥ 𝑐𝑗, 𝑗 ∈ 𝑁2
𝐴′

𝑗𝑝 = 𝑐𝑗, 𝑗 ∈ 𝑁3

Where 𝐴𝑗 is 𝑗-th column of the 𝑚 by 𝑛 matrix 𝐴.

Note: In what follows, we shall use 𝑎′
𝑖 to denote the 𝑖-th row of 𝐴 and 𝐴𝑗 to denote the 𝑗-th column of 𝐴.

𝐴 =
⎡
⎢⎢
⎣

𝑎′
1

𝑎′
2

𝑎′
𝑚

⎤
⎥⎥
⎦

.

To construct the dual of linear programming problem (7.1), we proceed as follows:
1. For every constraint 𝑎′

𝑖𝑥 ≥ (≤ 𝑜𝑟 =)𝑏𝑖, 𝑗 = 1, 2, ..., 𝑚, in the primal problem, we construct a corresponding dual
variable 𝑝𝑖. 𝑝𝑖 is restricted to be positive if 𝑎′

𝑖𝑥 ≥ 𝑏𝑖 or negative if 𝑎′
𝑖𝑥 ≤ 𝑏𝑖 or unrestricted if 𝑎′

𝑖𝑥 = 𝑏𝑖. We
construct the 𝑚-dimensional vector 𝑝 with entries 𝑝𝑖.

2. For every variable 𝑥𝑗, 𝑗 = 1, 2, ..., 𝑛, we construct a corresponding dual constraint 𝐴′
𝑗𝑝 ≥ (≤ 𝑜𝑟 =)𝑐𝑗. The

constraint is 𝐴′
𝑗𝑝 ≥ 𝑐𝑗 if 𝑥𝑗 ≤ 0, 𝐴′

𝑗𝑝 ≤ 𝑐𝑗 if 𝑥𝑗 ≥ 0 or 𝐴′
𝑗𝑝 = 𝑐𝑗 if 𝑥𝑗 is unrestricted.

3. The dual problem is to maximize objective function 𝑏′𝑝.
For amaximization problem, we can first transform it to an equivalent minimization problem and then follow the above
steps above to construct the dualminimization problem.
We can easily verify that the dual of a dual problem is the primal problem.
The following table summarizes relationships between objects in primal and dual problems.

Objective: Min Objective: Max
m constraints m variables
constraint ≥ variable ≥ 0
constraint ≤ variable ≤ 0
constraint = variable free
n variables n constraints
variable ≥ 0 constraint ≤
variable ≤ 0 constraint ≥
variable free constraint =
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As an example, the dual problem of the standard form (7.2) is:

max
𝑝

𝑏′𝑝

subject to 𝐴′𝑝 ≤ 𝑐

As another example, consider a linear programming problem with form:

max
𝑥

𝑐′𝑥
subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0
(7.3)

Its dual problem is:

min
𝑝

𝑏′𝑝

subject to 𝐴′𝑝 ≥ 𝑐
𝑝 ≥ 0

7.8 Duality Theorems

Primal and dual problems are linked by powerful duality theorems that have weak and strong forms.
The duality theorems provide the foundations of enlightening economic interpretations of linear programming problems.
Weak duality: For linear programming problem (7.1), if 𝑥 and 𝑝 are feasible solutions to the primal and the dual
problems, respectively, then

𝑏′𝑝 ≤ 𝑐′𝑥

Strong duality: For linear programming problem (7.1), if the primal problem has an optimal solution 𝑥, then the dual
problem also has an optimal solution. Denote an optimal solution of the dual problem as 𝑝. Then

𝑏′𝑝 = 𝑐′𝑥

According to strong duality, we can find the optimal value for the primal problem by solving the dual problem.
But the dual problem tells us even more as we shall see next.

7.8.1 Complementary Slackness

Let 𝑥 and 𝑝 be feasible solutions to the primal problem (7.1) and its dual problem, respectively.
Then 𝑥 and 𝑝 are also optimal solutions of the primal and dual problems if and only if:

𝑝𝑖(𝑎′
𝑖𝑥 − 𝑏𝑖) = 0, ∀𝑖,

𝑥𝑗(𝐴′
𝑗𝑝 − 𝑐𝑗) = 0, ∀𝑗.

This means that 𝑝𝑖 = 0 if 𝑎′
𝑖𝑥 − 𝑏𝑖 ≠ 0 and 𝑥𝑗 = 0 if 𝐴′

𝑗𝑝 − 𝑐𝑗 ≠ 0.
These are the celebrated complementary slackness conditions.
Let’s interpret them.
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7.8.2 Interpretations

Let’s take a version of problem (7.3) as a production problem and consider its associated dual problem.
A factory produce 𝑛 products with 𝑚 types of resources.
Where 𝑖 = 1, 2, … , 𝑚 and 𝑗 = 1, 2, … , 𝑛, let

• 𝑥𝑗 denote quantities of product 𝑗 to be produced
• 𝑎𝑖𝑗 denote required amount of resource 𝑖 to make one unit of product 𝑗,
• 𝑏𝑖 denotes the avaliable amount of resource 𝑖
• 𝑐𝑗 denotes the revenue generated by producing one unit of product 𝑗.

Dual variables: By strong duality, we have

𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 = 𝑏1𝑝1 + 𝑏2𝑝2 + ⋯ + 𝑏𝑚𝑝𝑚.

Evidently, a one unit change of 𝑏𝑖 results in 𝑝𝑖 units change of revenue.
Thus, a dual variable can be interpreted as the value of one unit of resource 𝑖.
This is why it is often called the shadow price of resource 𝑖.
For feasible but not optimal primal and dual solutions 𝑥 and 𝑝, by weak duality, we have

𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 < 𝑏1𝑝1 + 𝑏2𝑝2 + ⋯ + 𝑏𝑚𝑝𝑚.

Note: Here, the expression is opposite to the statement above since primal problem is a minimization problem.

When a strict inequality holds, the solution is not optimal because it doesn’t fully utilize all valuable resources.
Evidently,

• if a shadow price 𝑝𝑖 is larger than the market price for Resource 𝑖, the factory should buy more Resource 𝑖 and
expand its scale to generate more revenue;

• if a shadow price 𝑝𝑖 is less than the market price for Resource 𝑖, the factory should sell its Resource 𝑖.
Complementary slackness: If there exists 𝑖 such that 𝑎′

𝑖𝑥−𝑏𝑖 < 0 for some 𝑖, then 𝑝𝑖 = 0 by complementary slackness.
𝑎′

𝑖𝑥 − 𝑏𝑖 < 0 means that to achieve its optimal production, the factory doesn’t require as much Resource 𝑖 as it has. It is
reasonable that the shadow price of Resource 𝑖 is 0: some of its resource 𝑖 is redundant.
If there exists 𝑗 such that 𝐴′

𝑗𝑝 − 𝑐𝑗 > 0, then 𝑥𝑗 = 0 by complementary slackness. 𝐴′
𝑗𝑝 − 𝑐𝑗 > 0 means that the value

of all resources used when producing one unit of product 𝑗 is greater than its cost.
Thismeans that producing another product that canmore efficiently utilize these resources is a better choice than producing
product 𝑗
Since producing product 𝑗 is not optimal, 𝑥𝑗 should equal 0.
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7.8.3 Example 1: Production Problem

This problem is one specific instance of the problem (7.3), whose economic meaning is interpreted above.
Its dual problem is:

min
𝑥1,𝑥2

30𝑝1 + 20𝑝2

subject to 2𝑝1 + 4𝑝2 ≥ 3
5𝑝1 + 2𝑝2 ≥ 4
𝑝1, 𝑝2 ≥ 0

We solve this dual problem by using the function linprog.
Since parameters used here are defined before when solving the primal problem, we won’t define them here.

# Solve the dual problem
res_ex1_dual = linprog(b_ex1, A_ub=-A_ex1.T, b_ub=-c_ex1)

res_ex1_dual

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 27.5
x: [ 6.250e-01 4.375e-01]

nit: 2
lower: residual: [ 6.250e-01 4.375e-01]

marginals: [ 0.000e+00 0.000e+00]
upper: residual: [ inf inf]

marginals: [ 0.000e+00 0.000e+00]
eqlin: residual: []

marginals: []
ineqlin: residual: [ 0.000e+00 0.000e+00]

marginals: [-2.500e+00 -5.000e+00]
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

The optimal value for the dual problem equals 27.5.
This equals the optimal value of the primal problem, an illustration of strong duality.
Shadow prices for materials and labor are 0.625 and 0.4375, respectively.
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7.8.4 Example 2: Investment Problem

The dual problem is:

min
𝑝

100, 000𝑝1 − 20, 000𝑝4 − 20, 000𝑝5 − 20, 000𝑝6 + 50, 000𝑝7

subject to 𝑝1 + 𝑝2 + 𝑝3 ≥ 1.30 ⋅ 3
𝑝1 − 1.06𝑝2 + 𝑝4 = 0
𝑝2 − 1.06𝑝3 + 𝑝5 = 0
𝑝3 + 𝑝6 = 1.06
𝑝2 + 𝑝7 ≥ 1.30
𝑝𝑖 unrestricted, 𝑖 = 1, 2, 3
𝑝𝑖 ≤ 0, 𝑖 = 4, 5, 6
𝑝7 ≥ 0

We solve this dual problem by using the function linprog.

# Objective function parameters
c_ex2_dual = np.array([100000, 0, 0, -20000, -20000, -20000, 50000])

# Equality constraints
A_eq_ex2_dual = np.array([[1, -1.06, 0, 1, 0, 0, 0],

[0, 1, -1.06, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 0]])

b_eq_ex2_dual = np.array([0, 0, 1.06])

# Inequality constraints
A_ub_ex2_dual = - np.array([[1, 1, 1, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 1]])
b_ub_ex2_dual = - np.array([1.30*3, 1.30])

# Bounds on decision variables
bounds_ex2_dual = [(None, None),

(None, None),
(None, None),
(None, 0),
(None, 0),
(None, 0),
( 0, None)]

# Solve the dual problem
res_ex2_dual = linprog(c_ex2_dual, A_eq=A_eq_ex2_dual, b_eq=b_eq_ex2_dual,

A_ub=A_ub_ex2_dual, b_ub=b_ub_ex2_dual, bounds=bounds_ex2_dual)

res_ex2_dual

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 141018.2434979269
x: [ 1.376e+00 1.299e+00 1.225e+00 0.000e+00 0.000e+00

-1.650e-01 1.470e-03]
nit: 0

lower: residual: [ inf inf inf inf
inf inf 1.470e-03]

(continues on next page)
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marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00]

upper: residual: [ inf inf inf 0.000e+00
0.000e+00 1.650e-01 inf]

marginals: [ 0.000e+00 0.000e+00 0.000e+00 -9.507e+04
-2.465e+04 0.000e+00 0.000e+00]

eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00]
marginals: [ 7.507e+04 4.649e+03 -2.000e+04]

ineqlin: residual: [ 0.000e+00 0.000e+00]
marginals: [-2.493e+04 -5.000e+04]

mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

The optimal value for the dual problem is 141018.24, which equals the value of the primal problem.
Now, let’s interpret the dual variables.
By strong duality and also our numerical results, we have that optimal value is:

100, 000𝑝1 − 20, 000𝑝4 − 20, 000𝑝5 − 20, 000𝑝6 + 50, 000𝑝7.

We know if 𝑏𝑖 changes one dollor, then the optimal payoff in the end of the third year will change 𝑝𝑖 dollars.
For 𝑖 = 1, this means if the initial capital changes by one dollar, then the optimal payoff in the end of the third year will
change 𝑝1 dollars.
Thus, 𝑝1 is the potential value of one more unit of initial capital, or the shadow price for initial capital.
We can also interpret 𝑝1 as the prospective value in the end of the third year coming from having one more dollar to invest
at the beginning of the first year.
If the mutual fund can raise money at a cost lower than 𝑝1 − 1, then it should raise more money to increase its revenue.
But if it bears a cost of funds higher than 𝑝1 − 1, the mutual fund shouldn’t do that.
For 𝑖 = 4, 5, 6, this means that if the amount of capital that the fund is permitted to borrow from the bank changes by
one dollar, the optimal pay out at the end of the third year will change 𝑝𝑖 dollars.
Thus, for 𝑖 = 4, 5, 6, |𝑝𝑖| indicates the value of one dollar that the mutual fund can borrow from the bank at the beginning
of the 𝑖 − 3-th year.
|𝑝𝑖| is the shadow price for the loan amount. (We use absolute value here since 𝑝𝑖 ≤ 0.)
If the interest rate is lower than |𝑝𝑖|, then the mutual fund should borrow to increase its optimal payoff; if the interest rate
is higher, it is better to not do this.
For 𝑖 = 7, this means that if the amount of the corporate bond the mutual fund can buy changes one dollar, then the
optimal payoff will change 𝑝7 dollars at the end of the third year. Again, 𝑝7 is the shadow price for the amount of the
corporate bond the mutual fund can buy.
As for numerical results

1. 𝑝1 = 1.38, which means one dollar of initial capital is worth $1.38 at the end of the third year.
2. 𝑝4 = 𝑝5 = 0, which means the loan amounts at the beginning of the first and second year are worth nothing. Recall

that the optimal solution to the primal problem, 𝑥2, 𝑥3 > 0, which means at the beginning of the first and second
year, the mutual fund has a postive bank account and borrows no capital from the bank. Thus, it is reasonable
that the loan amounts at the beginning of the first and second year are valueless. This is what the complementary
slackness conditions mean in this setting.
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3. 𝑝6 = −0.16, which means one dollar of the loan amount at the beginning of the third year is worth $0.16. Since
|𝑝6| is higher than the interest rate 6%, the mutual fund should borrow as much as possible at the beginning of the
third year. Recall that the optimal solution to the primal problem is 𝑥4 = −20, 000 which means the mutual fund
borrows money from the bank as much as it can.

4. 𝑝7 = 0.0015, which means one dollar of the amount of the corporate bond that the mutual fund can buy is worth
$0.0015.
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CHAPTER

EIGHT

OPTIMAL TRANSPORT

8.1 Overview

The transportation or optimal transport problem is interesting both because of its many applications and because of
its important role in the history of economic theory.
In this lecture, we describe the problem, tell how linear programming is a key tool for solving it, and then provide some
examples.
We will provide other applications in followup lectures.
The optimal transport problem was studied in early work about linear programming, as summarized for example by
[Dorfman et al., 1958]. A modern reference about applications in economics is [Galichon, 2016].
Below, we show how to solve the optimal transport problem using several implementations of linear programming, in-
cluding, in order,

1. the linprog solver from SciPy,
2. the linprog_simplex solver from QuantEcon and
3. the simplex-based solvers included in the Python Optimal Transport package.

!pip install --upgrade quantecon
!pip install --upgrade POT

Let’s start with some imports.

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import linprog
from quantecon.optimize.linprog_simplex import linprog_simplex
import ot
from scipy.stats import betabinom
import networkx as nx
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8.2 The Optimal Transport Problem

Suppose that 𝑚 factories produce goods that must be sent to 𝑛 locations.
Let

• 𝑥𝑖𝑗 denote the quantity shipped from factory 𝑖 to location 𝑗
• 𝑐𝑖𝑗 denote the cost of shipping one unit from factory 𝑖 to location 𝑗
• 𝑝𝑖 denote the capacity of factory 𝑖 and 𝑞𝑗 denote the amount required at location 𝑗.
• 𝑖 = 1, 2, … , 𝑚 and 𝑗 = 1, 2, … , 𝑛.

A planner wants to minimize total transportation costs subject to the following constraints:
• The amount shipped from each factory must equal its capacity.
• The amount shipped to each location must equal the quantity required there.

The figure below shows one visualization of this idea, when factories and target locations are distributed in the plane.

The size of the vertices in the figure are proportional to
• capacity, for the factories, and
• demand (amount required) for the target locations.

The arrows show one possible transport plan, which respects the constraints stated above.
The planner’s problem can be expressed as the following constrained minimization problem:

min
𝑥𝑖𝑗

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

subject to
𝑛

∑
𝑗=1

𝑥𝑖𝑗 = 𝑝𝑖, 𝑖 = 1, 2, … , 𝑚

𝑚
∑
𝑖=1

𝑥𝑖𝑗 = 𝑞𝑗, 𝑗 = 1, 2, … , 𝑛

𝑥𝑖𝑗 ≥ 0

(8.1)

This is an optimal transport problem with
• 𝑚𝑛 decision variables, namely, the entries 𝑥𝑖𝑗 and
• 𝑚 + 𝑛 constraints.
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Summing the 𝑞𝑗’s across all 𝑗’s and the 𝑝𝑖’s across all 𝑖’s indicates that the total capacity of all the factories equals total
requirements at all locations:

𝑛
∑
𝑗=1

𝑞𝑗 =
𝑛

∑
𝑗=1

𝑚
∑
𝑖=1

𝑥𝑖𝑗 =
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

𝑥𝑖𝑗 =
𝑚

∑
𝑖=1

𝑝𝑖 (8.2)

The presence of the restrictions in (8.2) will be the source of one redundancy in the complete set of restrictions that we
describe below.
More about this later.

8.3 The Linear Programming Approach

In this section we discuss using using standard linear programming solvers to tackle the optimal transport problem.

8.3.1 Vectorizing a Matrix of Decision Variables

A matrix of decision variables 𝑥𝑖𝑗 appears in problem (8.1).
The SciPy function linprog expects to see a vector of decision variables.
This situation impels us to rewrite our problem in terms of a vector of decision variables.
Let

• 𝑋, 𝐶 be 𝑚 × 𝑛 matrices with entries 𝑥𝑖𝑗, 𝑐𝑖𝑗,
• 𝑝 be 𝑚-dimensional vector with entries 𝑝𝑖,
• 𝑞 be 𝑛-dimensional vector with entries 𝑞𝑗.

With 1𝑛 denoting the 𝑛-dimensional column vector (1, 1, … , 1)′, our problem can now be expressed compactly as:

min
𝑋

tr(𝐶′𝑋)
subject to 𝑋 1𝑛 = 𝑝

𝑋′ 1𝑚 = 𝑞
𝑋 ≥ 0

We can convert the matrix 𝑋 into a vector by stacking all of its columns into a column vector.
Doing this is called vectorization, an operation that we denote vec(𝑋).
Similarly, we convert the matrix 𝐶 into an 𝑚𝑛-dimensional vector vec(𝐶).
The objective function can be expressed as the inner product between vec(𝐶) and vec(𝑋):

vec(𝐶)′ ⋅ vec(𝑋).

To express the constraints in terms of vec(𝑋), we use a Kronecker product denoted by ⊗ and defined as follows.
Suppose 𝐴 is an 𝑚 × 𝑠 matrix with entries (𝑎𝑖𝑗) and that 𝐵 is an 𝑛 × 𝑡 matrix.
The Kronecker product of 𝐴 and 𝐵 is defined, in block matrix form, by

𝐴 ⊗ 𝐵 =
⎛⎜⎜⎜
⎝

𝑎11𝐵 𝑎12𝐵 … 𝑎1𝑠𝐵
𝑎21𝐵 𝑎22𝐵 … 𝑎2𝑠𝐵

⋮
𝑎𝑚1𝐵 𝑎𝑚2𝐵 … 𝑎𝑚𝑠𝐵

⎞⎟⎟⎟
⎠

.
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𝐴 ⊗ 𝐵 is an 𝑚𝑛 × 𝑠𝑡 matrix.
It has the property that for any 𝑚 × 𝑛 matrix 𝑋

vec(𝐴′𝑋𝐵) = (𝐵′ ⊗ 𝐴′) vec(𝑋). (8.3)

We can now express our constraints in terms of vec(𝑋).
Let 𝐴 = I′𝑚, 𝐵 = 1𝑛.
By equation (8.3)

𝑋 1𝑛 = vec(𝑋 1𝑛) = vec(I𝑚𝑋 1𝑛) = (1′
𝑛 ⊗ I𝑚) vec(𝑋).

where I𝑚 denotes the 𝑚 × 𝑚 identity matrix.
Constraint 𝑋 1𝑛 = 𝑝 can now be written as:

(1′
𝑛 ⊗ I𝑚) vec(𝑋) = 𝑝.

Similarly, the constraint 𝑋′ 1𝑚 = 𝑞 can be rewriten as:

(I𝑛 ⊗ 1′
𝑚) vec(𝑋) = 𝑞.

With 𝑧 ∶= vec(𝑋), our problem can now be expressed in terms of an 𝑚𝑛-dimensional vector of decision variables:

min
𝑧

vec(𝐶)′𝑧
subject to 𝐴𝑧 = 𝑏

𝑧 ≥ 0
(8.4)

where

𝐴 = (1
′
𝑛 ⊗ I𝑚
I𝑛 ⊗ 1′

𝑚
) and 𝑏 = (𝑝

𝑞)

8.3.2 An Application

We now provide an example that takes the form (8.4) that we’ll solve by deploying the function linprog.
The table below provides numbers for the requirements vector 𝑞, the capacity vector 𝑝, and entries 𝑐𝑖𝑗 of the cost-of-
shipping matrix 𝐶.
The numbers in the above table tell us to set 𝑚 = 3, 𝑛 = 5, and construct the following objects:

𝑝 = ⎛⎜
⎝

50
100
150

⎞⎟
⎠

, 𝑞 =
⎛⎜⎜⎜⎜⎜⎜
⎝

25
115
60
30
70

⎞⎟⎟⎟⎟⎟⎟
⎠

and 𝐶 = ⎛⎜
⎝

10 15 20 20 40
20 40 15 30 30
30 35 40 55 25

⎞⎟
⎠

.

Let’s write Python code that sets up the problem and solves it.

# Define parameters
m = 3
n = 5

p = np.array([50, 100, 150])

(continues on next page)
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q = np.array([25, 115, 60, 30, 70])

C = np.array([[10, 15, 20, 20, 40],
[20, 40, 15, 30, 30],
[30, 35, 40, 55, 25]])

# Vectorize matrix C
C_vec = C.reshape((m*n, 1), order='F')

# Construct matrix A by Kronecker product
A1 = np.kron(np.ones((1, n)), np.identity(m))
A2 = np.kron(np.identity(n), np.ones((1, m)))
A = np.vstack([A1, A2])

# Construct vector b
b = np.hstack([p, q])

# Solve the primal problem
res = linprog(C_vec, A_eq=A, b_eq=b)

# Print results
print("message:", res.message)
print("nit:", res.nit)
print("fun:", res.fun)
print("z:", res.x)
print("X:", res.x.reshape((m,n), order='F'))

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
nit: 8
fun: 7225.0
z: [ 0. 10. 15. 50. 0. 65. 0. 60. 0. 0. 30. 0. 0. 0. 70.]
X: [[ 0. 50. 0. 0. 0.]
[10. 0. 60. 30. 0.]
[15. 65. 0. 0. 70.]]

Notice how, in the line C_vec = C.reshape((m*n, 1), order='F'), we are careful to vectorize using the
flag order='F'.
This is consistent with converting 𝐶 into a vector by stacking all of its columns into a column vector.
Here 'F' stands for “Fortran”, and we are using Fortran style column-major order.
(For an alternative approach, using Python’s default row-major ordering, see this lecture by Alfred Galichon.)
Interpreting the warning:
The above warning message from SciPy points out that A is not full rank.
This indicates that the linear program has been set up to include one or more redundant constraints.
Here, the source of the redundancy is the structure of restrictions (8.2).
Let’s explore this further by printing out 𝐴 and staring at it.

A
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array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.],
[0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0.],
[0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1.],
[1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1.]])

The singularity of𝐴 reflects that the first three constraints and the last five constraints both require that “total requirements
equal total capacities” expressed in (8.2).
One equality constraint here is redundant.
Below we drop one of the equality constraints, and use only 7 of them.
After doing this, we attain the same minimized cost.
However, we find a different transportation plan.
Though it is a different plan, it attains the same cost!

linprog(C_vec, A_eq=A[:-1], b_eq=b[:-1])

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 7225.0
x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]

nit: 8
lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00

7.000e+01]
marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
upper: residual: [ inf inf ... inf

inf]
marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00

0.000e+00]
eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.000e+00 0.000e+00 0.000e+00]
marginals: [ 5.000e+00 1.500e+01 2.500e+01 5.000e+00

1.000e+01 -0.000e+00 1.500e+01]
ineqlin: residual: []

marginals: []
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

%time linprog(C_vec, A_eq=A[:-1], b_eq=b[:-1])

CPU times: user 811 µs, sys: 136 µs, total: 947 µs
Wall time: 875 µs

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True

(continues on next page)
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status: 0
fun: 7225.0

x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]
nit: 8

lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00
7.000e+01]

marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01
0.000e+00]

upper: residual: [ inf inf ... inf
inf]

marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00
0.000e+00]

eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00]

marginals: [ 5.000e+00 1.500e+01 2.500e+01 5.000e+00
1.000e+01 -0.000e+00 1.500e+01]

ineqlin: residual: []
marginals: []

mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

%time linprog(C_vec, A_eq=A, b_eq=b)

CPU times: user 1.29 ms, sys: 0 ns, total: 1.29 ms
Wall time: 1.19 ms

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 7225.0
x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]

nit: 8
lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00

7.000e+01]
marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
upper: residual: [ inf inf ... inf

inf]
marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00

0.000e+00]
eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.000e+00 0.000e+00 0.000e+00 0.000e+00]
marginals: [ 1.000e+01 2.000e+01 3.000e+01 -0.000e+00

5.000e+00 -5.000e+00 1.000e+01 -5.000e+00]
ineqlin: residual: []

marginals: []
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

Evidently, it is slightly quicker to work with the system that removed a redundant constraint.
Let’s drill down and do some more calculations to help us understand whether or not our finding two different optimal
transport plans reflects our having dropped a redundant equality constraint.
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Hint
It will turn out that dropping a redundant equality isn’t really what mattered.

To verify our hint, we shall simply use all of the original equality constraints (including a redundant one), but we’ll just
shuffle the order of the constraints.

arr = np.arange(m+n)

sol_found = []
cost = []

# simulate 1000 times
for i in range(1000):

np.random.shuffle(arr)
res_shuffle = linprog(C_vec, A_eq=A[arr], b_eq=b[arr])

# if find a new solution
sol = tuple(res_shuffle.x)
if sol not in sol_found:

sol_found.append(sol)
cost.append(res_shuffle.fun)

for i in range(len(sol_found)):
print(f"transportation plan {i}: ", sol_found[i])
print(f" minimized cost {i}: ", cost[i])

transportation plan 0: (0.0, 10.0, 15.0, 50.0, 0.0, 65.0, 0.0, 60.0, 0.0, 0.0, 30.
↪0, 0.0, 0.0, 0.0, 70.0)

minimized cost 0: 7225.0

Ah hah! As you can see, putting constraints in different orders in this case uncovers two optimal transportation plans that
achieve the same minimized cost.
These are the same two plans computed earlier.
Next, we show that leaving out the first constraint “accidentally” leads to the initial plan that we computed.

linprog(C_vec, A_eq=A[1:], b_eq=b[1:])

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 7225.0
x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]

nit: 8
lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00

7.000e+01]
marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
upper: residual: [ inf inf ... inf

inf]

(continues on next page)
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marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00
0.000e+00]

eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00]

marginals: [ 1.000e+01 2.000e+01 1.000e+01 1.500e+01
5.000e+00 2.000e+01 5.000e+00]

ineqlin: residual: []
marginals: []

mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

Let’s compare this transport plan with

res.x

array([ 0., 10., 15., 50., 0., 65., 0., 60., 0., 0., 30., 0., 0.,
0., 70.])

Here the matrix 𝑋 contains entries 𝑥𝑖𝑗 that tell amounts shipped from factor 𝑖 = 1, 2, 3 to location 𝑗 = 1, 2, … , 5.
The vector 𝑧 evidently equals vec(𝑋).
The minimized cost from the optimal transport plan is given by the 𝑓𝑢𝑛 variable.

8.3.3 Using a Just-in-Time Compiler

We can also solve optimal transportation problems using a powerful tool from QuantEcon, namely, quantecon.
optimize.linprog_simplex.
While this routine uses the same simplex algorithm as scipy.optimize.linprog, the code is accelerated by using
a just-in-time compiler shipped in the numba library.
As you will see very soon, by using scipy.optimize.linprog the time required to solve an optimal transportation
problem can be reduced significantly.

# construct matrices/vectors for linprog_simplex
c = C.flatten()

# Equality constraints
A_eq = np.zeros((m+n, m*n))
for i in range(m):

for j in range(n):
A_eq[i, i*n+j] = 1
A_eq[m+j, i*n+j] = 1

b_eq = np.hstack([p, q])

Since quantecon.optimize.linprog_simplex does maximization instead of minimization, we need to put a
negative sign before vector c.

res_qe = linprog_simplex(-c, A_eq=A_eq, b_eq=b_eq)

Since the two LP solvers use the same simplex algorithm, we expect to get exactly the same solutions
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res_qe.x.reshape((m, n), order='C')

array([[15., 35., 0., 0., 0.],
[10., 0., 60., 30., 0.],
[ 0., 80., 0., 0., 70.]])

res.x.reshape((m, n), order='F')

array([[ 0., 50., 0., 0., 0.],
[10., 0., 60., 30., 0.],
[15., 65., 0., 0., 70.]])

Let’s do a speed comparison between scipy.optimize.linprog and quantecon.optimize.
linprog_simplex.

# scipy.optimize.linprog
%time res = linprog(C_vec, A_eq=A[:-1, :], b_eq=b[:-1])

CPU times: user 1.23 ms, sys: 75 µs, total: 1.3 ms
Wall time: 1.13 ms

# quantecon.optimize.linprog_simplex
%time out = linprog_simplex(-c, A_eq=A_eq, b_eq=b_eq)

CPU times: user 59 µs, sys: 4 µs, total: 63 µs
Wall time: 66.8 µs

As you can see, the quantecon.optimize.linprog_simplex is much faster.
(Note however, that the SciPy version is probably more stable than the QuantEcon version, having been tested more
extensively over a longer period of time.)

8.4 The Dual Problem

Let 𝑢, 𝑣 denotes vectors of dual decision variables with entries (𝑢𝑖), (𝑣𝑗).
The dual to minimization problem (8.1) is the maximization problem:

max
𝑢𝑖,𝑣𝑗

𝑚
∑
𝑖=1

𝑝𝑖𝑢𝑖 +
𝑛

∑
𝑗=1

𝑞𝑗𝑣𝑗

subject to 𝑢𝑖 + 𝑣𝑗 ≤ 𝑐𝑖𝑗, 𝑖 = 1, 2, … , 𝑚; 𝑗 = 1, 2, … , 𝑛
(8.5)

The dual problem is also a linear programming problem.
It has 𝑚 + 𝑛 dual variables and 𝑚𝑛 constraints.
Vectors 𝑢 and 𝑣 of values are attached to the first and the second sets of primal constraits, respectively.
Thus, 𝑢 is attached to the constraints

• (1′
𝑛 ⊗ I𝑚) vec(𝑋) = 𝑝
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and 𝑣 is attached to constraints
• (I𝑛 ⊗ 1′

𝑚) vec(𝑋) = 𝑞.
Components of the vectors 𝑢 and 𝑣 of per unit values are shadow prices of the quantities appearing on the right sides of
those constraints.
We can write the dual problem as

max
𝑢𝑖,𝑣𝑗

𝑝𝑢 + 𝑞𝑣

subject to 𝐴′ (𝑢
𝑣) = vec(𝐶)

(8.6)

For the same numerical example described above, let’s solve the dual problem.

# Solve the dual problem
res_dual = linprog(-b, A_ub=A.T, b_ub=C_vec,

bounds=[(None, None)]*(m+n))

#Print results
print("message:", res_dual.message)
print("nit:", res_dual.nit)
print("fun:", res_dual.fun)
print("u:", res_dual.x[:m])
print("v:", res_dual.x[-n:])

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
nit: 9
fun: -7225.0
u: [-20. -10. 0.]
v: [30. 35. 25. 40. 25.]

We can also solve the dual problem using quantecon.optimize.linprog_simplex.

res_dual_qe = linprog_simplex(b_eq, A_ub=A_eq.T, b_ub=c)

And the shadow prices computed by the two programs are identical.

res_dual_qe.x

array([ 5., 15., 25., 5., 10., 0., 15., 0.])

res_dual.x

array([-20., -10., 0., 30., 35., 25., 40., 25.])

We can compare computational times from using our two tools.

%time linprog(-b, A_ub=A.T, b_ub=C_vec, bounds=[(None, None)]*(m+n))

CPU times: user 1.32 ms, sys: 0 ns, total: 1.32 ms
Wall time: 1.22 ms
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message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: -7225.0
x: [-2.000e+01 -1.000e+01 0.000e+00 3.000e+01 3.500e+01

2.500e+01 4.000e+01 2.500e+01]
nit: 9

lower: residual: [ inf inf inf inf
inf inf inf inf]

marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00]

upper: residual: [ inf inf inf inf
inf inf inf inf]

marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00]

eqlin: residual: []
marginals: []

ineqlin: residual: [ 0.000e+00 0.000e+00 ... 1.500e+01
0.000e+00]

marginals: [-0.000e+00 -1.000e+01 ... -0.000e+00
-7.000e+01]

mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

%time linprog_simplex(b_eq, A_ub=A_eq.T, b_ub=c)

CPU times: user 269 µs, sys: 0 ns, total: 269 µs
Wall time: 272 µs

SimplexResult(x=array([ 5., 15., 25., 5., 10., 0., 15., 0.]), lambd=array([ 0.,␣
↪35., 0., 15., 0., 25., 0., 60., 15., 0., 0., 80., 0.,

0., 70.]), fun=7225.0, success=True, status=0, num_iter=24)

quantecon.optimize.linprog_simplex solves the dual problem 10 times faster.
Just for completeness, let’s solve the dual problems with nonsingular 𝐴 matrices that we create by dropping a redundant
equality constraint.
Try first leaving out the first constraint:

linprog(-b[1:], A_ub=A[1:].T, b_ub=C_vec,
bounds=[(None, None)]*(m+n-1))

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: -7225.0
x: [ 1.000e+01 2.000e+01 1.000e+01 1.500e+01 5.000e+00

2.000e+01 5.000e+00]
nit: 12

lower: residual: [ inf inf inf inf
inf inf inf]

marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

(continues on next page)
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0.000e+00 0.000e+00 0.000e+00]
upper: residual: [ inf inf inf inf

inf inf inf]
marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.000e+00 0.000e+00 0.000e+00]
eqlin: residual: []

marginals: []
ineqlin: residual: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
marginals: [-1.500e+01 -1.000e+01 ... -0.000e+00

-7.000e+01]
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

Not let’s instead leave out the last constraint:

linprog(-b[:-1], A_ub=A[:-1].T, b_ub=C_vec,
bounds=[(None, None)]*(m+n-1))

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: -7225.0
x: [ 5.000e+00 1.500e+01 2.500e+01 5.000e+00 1.000e+01

-0.000e+00 1.500e+01]
nit: 9

lower: residual: [ inf inf inf inf
inf inf inf]

marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00]

upper: residual: [ inf inf inf inf
inf inf inf]

marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00]

eqlin: residual: []
marginals: []

ineqlin: residual: [ 0.000e+00 0.000e+00 ... 1.500e+01
0.000e+00]

marginals: [-0.000e+00 -1.000e+01 ... -0.000e+00
-7.000e+01]

mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0
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8.4.1 Interpretation of dual problem

By strong duality (please see this lecture Linear Programming), we know that:
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 =
𝑚

∑
𝑖=1

𝑝𝑖𝑢𝑖 +
𝑛

∑
𝑗=1

𝑞𝑗𝑣𝑗

One unit more capacity in factory 𝑖, i.e. 𝑝𝑖, results in 𝑢𝑖 more transportation costs.
Thus, 𝑢𝑖 describes the cost of shipping one unit from factory 𝑖.
Call this the ship-out cost of one unit shipped from factory 𝑖.
Similarly, 𝑣𝑗 is the cost of shipping one unit to location 𝑗.
Call this the ship-in cost of one unit to location 𝑗.
Strong duality implies that total transprotation costs equals total ship-out costs plus total ship-in costs.
It is reasonable that, for one unit of a product, ship-out cost 𝑢𝑖 plus ship-in cost 𝑣𝑗 should equal transportation cost 𝑐𝑖𝑗.
This equality is assured by complementary slackness conditions that state that whenever 𝑥𝑖𝑗 > 0, meaning that there
are positive shipments from factory 𝑖 to location 𝑗, it must be true that 𝑢𝑖 + 𝑣𝑗 = 𝑐𝑖𝑗.

8.5 The Python Optimal Transport Package

There is an excellent Python package for optimal transport that simplifies some of the steps we took above.
In particular, the package takes care of the vectorization steps before passing the data out to a linear programming routine.
(That said, the discussion provided above on vectorization remains important, since we want to understand what happens
under the hood.)

8.5.1 Replicating Previous Results

The following line of code solves the example application discussed above using linear programming.

X = ot.emd(p, q, C)
X

/tmp/ipykernel_2392/1617639716.py:1: UserWarning: Input histogram consists of␣
↪integer. The transport plan will be casted accordingly, possibly resulting in a␣
↪loss of precision. If this behaviour is unwanted, please make sure your input␣
↪histogram consists of floating point elements.
X = ot.emd(p, q, C)

array([[15, 35, 0, 0, 0],
[10, 0, 60, 30, 0],
[ 0, 80, 0, 0, 70]])

Sure enough, we have the same solution and the same cost

total_cost = np.sum(X * C)
total_cost
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8.5.2 A Larger Application

Now let’s try using the same package on a slightly larger application.
The application has the same interpretation as above but we will also give each node (i.e., vertex) a location in the plane.
This will allow us to plot the resulting transport plan as edges in a graph.
The following class defines a node by

• its location (𝑥, 𝑦) ∈ ℝ2,
• its group (factory or location, denoted by p or q) and
• its mass (e.g., 𝑝𝑖 or 𝑞𝑗).

class Node:

def __init__(self, x, y, mass, group, name):

self.x, self.y = x, y
self.mass, self.group = mass, group
self.name = name

Next we write a function that repeatedly calls the class above to build instances.
It allocates to the nodes it creates their location, mass, and group.
Locations are assigned randomly.

def build_nodes_of_one_type(group='p', n=100, seed=123):

nodes = []
np.random.seed(seed)

for i in range(n):

if group == 'p':
m = 1/n
x = np.random.uniform(-2, 2)
y = np.random.uniform(-2, 2)

else:
m = betabinom.pmf(i, n-1, 2, 2)
x = 0.6 * np.random.uniform(-1.5, 1.5)
y = 0.6 * np.random.uniform(-1.5, 1.5)

name = group + str(i)
nodes.append(Node(x, y, m, group, name))

return nodes

Now we build two lists of nodes, each one containing one type (factories or locations)

n_p = 32
n_q = 32

(continues on next page)
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p_list = build_nodes_of_one_type(group='p', n=n_p)
q_list = build_nodes_of_one_type(group='q', n=n_q)

p_probs = [p.mass for p in p_list]
q_probs = [q.mass for q in q_list]

For the cost matrix 𝐶, we use the Euclidean distance between each factory and location.

c = np.empty((n_p, n_q))
for i in range(n_p):

for j in range(n_q):
x0, y0 = p_list[i].x, p_list[i].y
x1, y1 = q_list[j].x, q_list[j].y
c[i, j] = np.sqrt((x0-x1)**2 + (y0-y1)**2)

Now we are ready to apply the solver

%time pi = ot.emd(p_probs, q_probs, c)

CPU times: user 454 µs, sys: 20 µs, total: 474 µs
Wall time: 307 µs

Finally, let’s plot the results using networkx.
In the plot below,

• node size is proportional to probability mass
• an edge (arrow) from 𝑖 to 𝑗 is drawn when a positive transfer is made from 𝑖 to 𝑗 under the optimal transport plan.

g = nx.DiGraph()
g.add_nodes_from([p.name for p in p_list])
g.add_nodes_from([q.name for q in q_list])

for i in range(n_p):
for j in range(n_q):

if pi[i, j] > 0:
g.add_edge(p_list[i].name, q_list[j].name, weight=pi[i, j])

node_pos_dict={}
for p in p_list:

node_pos_dict[p.name] = (p.x, p.y)

for q in q_list:
node_pos_dict[q.name] = (q.x, q.y)

node_color_list = []
node_size_list = []
scale = 8_000
for p in p_list:

node_color_list.append('blue')
node_size_list.append(p.mass * scale)

for q in q_list:
node_color_list.append('red')
node_size_list.append(q.mass * scale)

(continues on next page)
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fig, ax = plt.subplots(figsize=(7, 10))
plt.axis('off')

nx.draw_networkx_nodes(g,
node_pos_dict,
node_color=node_color_list,
node_size=node_size_list,
edgecolors='grey',
linewidths=1,
alpha=0.5,
ax=ax)

nx.draw_networkx_edges(g,
node_pos_dict,
arrows=True,
connectionstyle='arc3,rad=0.1',
alpha=0.6)

plt.show()
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CHAPTER

NINE

VON NEUMANN GROWTH MODEL (AND A GENERALIZATION)

This lecture uses the class Neumann to calculate key objects of a linear growth model of John von Neumann [von
Neumann, 1937] that was generalized by Kemeny, Morgenstern and Thompson [Kemeny et al., 1956].
Objects of interest are the maximal expansion rate (𝛼), the interest factor (𝛽), the optimal intensities (𝑥), and prices (𝑝).
In addition to watching how the towering mind of John von Neumann formulated an equilibrium model of price and
quantity vectors in balanced growth, this lecture shows how fruitfully to employ the following important tools:

• a zero-sum two-player game
• linear programming
• the Perron-Frobenius theorem

We’ll begin with some imports:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fsolve, linprog
from textwrap import dedent

np.set_printoptions(precision=2)

The code below provides the Neumann class

class Neumann(object):

"""
This class describes the Generalized von Neumann growth model as it was
discussed in Kemeny et al. (1956, ECTA) and Gale (1960, Chapter 9.5):

Let:
n ... number of goods
m ... number of activities
A ... input matrix is m-by-n

a_{i,j} - amount of good j consumed by activity i
B ... output matrix is m-by-n

b_{i,j} - amount of good j produced by activity i

x ... intensity vector (m-vector) with non-negative entries
x'B - the vector of goods produced
x'A - the vector of goods consumed

p ... price vector (n-vector) with non-negative entries
Bp - the revenue vector for every activity
Ap - the cost of each activity

(continues on next page)
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Both A and B have non-negative entries. Moreover, we assume that
(1) Assumption I (every good which is consumed is also produced):

for all j, b_{.,j} > 0, i.e. at least one entry is strictly positive
(2) Assumption II (no free lunch):

for all i, a_{i,.} > 0, i.e. at least one entry is strictly positive

Parameters
----------
A : array_like or scalar(float)

Part of the state transition equation. It should be `n x n`
B : array_like or scalar(float)

Part of the state transition equation. It should be `n x k`
"""

def __init__(self, A, B):

self.A, self.B = list(map(self.convert, (A, B)))
self.m, self.n = self.A.shape

# Check if (A, B) satisfy the basic assumptions
assert self.A.shape == self.B.shape, 'The input and output matrices \

must have the same dimensions!'
assert (self.A >= 0).all() and (self.B >= 0).all(), 'The input and \

output matrices must have only non-negative entries!'

# (1) Check whether Assumption I is satisfied:
if (np.sum(B, 0) <= 0).any():

self.AI = False
else:

self.AI = True

# (2) Check whether Assumption II is satisfied:
if (np.sum(A, 1) <= 0).any():

self.AII = False
else:

self.AII = True

def __repr__(self):
return self.__str__()

def __str__(self):

me = """
Generalized von Neumann expanding model:
- number of goods : {n}
- number of activities : {m}

Assumptions:
- AI: every column of B has a positive entry : {AI}
- AII: every row of A has a positive entry : {AII}

"""
# Irreducible : {irr}
return dedent(me.format(n=self.n, m=self.m,

AI=self.AI, AII=self.AII))

(continues on next page)
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def convert(self, x):
"""
Convert array_like objects (lists of lists, floats, etc.) into
well-formed 2D NumPy arrays
"""
return np.atleast_2d(np.asarray(x))

def bounds(self):
"""
Calculate the trivial upper and lower bounds for alpha (expansion rate)
and beta (interest factor). See the proof of Theorem 9.8 in Gale (1960)
"""

n, m = self.n, self.m
A, B = self.A, self.B

f = lambda α: ((B - α * A) @ np.ones((n, 1))).max()
g = lambda β: (np.ones((1, m)) @ (B - β * A)).min()

UB = fsolve(f, 1).item() # Upper bound for α, β
LB = fsolve(g, 2).item() # Lower bound for α, β

return LB, UB

def zerosum(self, γ, dual=False):
"""
Given gamma, calculate the value and optimal strategies of a
two-player zero-sum game given by the matrix

M(gamma) = B - gamma * A

Row player maximizing, column player minimizing

Zero-sum game as an LP (primal --> α)

max (0', 1) @ (x', v)
subject to
[-M', ones(n, 1)] @ (x', v)' <= 0
(x', v) @ (ones(m, 1), 0) = 1
(x', v) >= (0', -inf)

Zero-sum game as an LP (dual --> beta)

min (0', 1) @ (p', u)
subject to
[M, -ones(m, 1)] @ (p', u)' <= 0
(p', u) @ (ones(n, 1), 0) = 1
(p', u) >= (0', -inf)

Outputs:
--------
value: scalar

value of the zero-sum game

(continues on next page)
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strategy: vector
if dual = False, it is the intensity vector,
if dual = True, it is the price vector

"""

A, B, n, m = self.A, self.B, self.n, self.m
M = B - γ * A

if dual == False:
# Solve the primal LP (for details see the description)
# (1) Define the problem for v as a maximization (linprog minimizes)
c = np.hstack([np.zeros(m), -1])

# (2) Add constraints :
# ... non-negativity constraints
bounds = tuple(m * [(0, None)] + [(None, None)])
# ... inequality constraints
A_iq = np.hstack([-M.T, np.ones((n, 1))])
b_iq = np.zeros((n, 1))
# ... normalization
A_eq = np.hstack([np.ones(m), 0]).reshape(1, m + 1)
b_eq = 1

res = linprog(c, A_ub=A_iq, b_ub=b_iq, A_eq=A_eq, b_eq=b_eq,
bounds=bounds)

else:
# Solve the dual LP (for details see the description)
# (1) Define the problem for v as a maximization (linprog minimizes)
c = np.hstack([np.zeros(n), 1])

# (2) Add constraints :
# ... non-negativity constraints
bounds = tuple(n * [(0, None)] + [(None, None)])
# ... inequality constraints
A_iq = np.hstack([M, -np.ones((m, 1))])
b_iq = np.zeros((m, 1))
# ... normalization
A_eq = np.hstack([np.ones(n), 0]).reshape(1, n + 1)
b_eq = 1

res = linprog(c, A_ub=A_iq, b_ub=b_iq, A_eq=A_eq, b_eq=b_eq,
bounds=bounds)

if res.status != 0:
print(res.message)

# Pull out the required quantities
value = res.x[-1]
strategy = res.x[:-1]

return value, strategy

def expansion(self, tol=1e-8, maxit=1000):

(continues on next page)
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"""
The algorithm used here is described in Hamburger-Thompson-Weil
(1967, ECTA). It is based on a simple bisection argument and utilizes
the idea that for a given γ (= α or β), the matrix "M = B - γ * A"
defines a two-player zero-sum game, where the optimal strategies are
the (normalized) intensity and price vector.

Outputs:
--------
alpha: scalar

optimal expansion rate
"""

LB, UB = self.bounds()

for iter in range(maxit):

γ = (LB + UB) / 2
ZS = self.zerosum(γ=γ)
V = ZS[0] # value of the game with γ

if V >= 0:
LB = γ

else:
UB = γ

if abs(UB - LB) < tol:
γ = (UB + LB) / 2
x = self.zerosum(γ=γ)[1]
p = self.zerosum(γ=γ, dual=True)[1]
break

return γ, x, p

def interest(self, tol=1e-8, maxit=1000):
"""
The algorithm used here is described in Hamburger-Thompson-Weil
(1967, ECTA). It is based on a simple bisection argument and utilizes
the idea that for a given gamma (= alpha or beta),
the matrix "M = B - γ * A" defines a two-player zero-sum game,
where the optimal strategies are the (normalized) intensity and price
vector

Outputs:
--------
beta: scalar

optimal interest rate
"""

LB, UB = self.bounds()

for iter in range(maxit):
γ = (LB + UB) / 2
ZS = self.zerosum(γ=γ, dual=True)
V = ZS[0]

(continues on next page)
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if V > 0:
LB = γ

else:
UB = γ

if abs(UB - LB) < tol:
γ = (UB + LB) / 2
p = self.zerosum(γ=γ, dual=True)[1]
x = self.zerosum(γ=γ)[1]
break

return γ, x, p

9.1 Notation

We use the following notation.
0 denotes a vector of zeros.
We call an 𝑛-vector positive and write 𝑥 ≫ 0 if 𝑥𝑖 > 0 for all 𝑖 = 1, 2, … , 𝑛.
We call a vector non-negative and write 𝑥 ≥ 0 if 𝑥𝑖 ≥ 0 for all 𝑖 = 1, 2, … , 𝑛.
We call a vector semi-positive and written 𝑥 > 0 if 𝑥 ≥ 0 and 𝑥 ≠ 0.
For two conformable vectors 𝑥 and 𝑦, 𝑥 ≫ 𝑦, 𝑥 ≥ 𝑦 and 𝑥 > 𝑦 mean 𝑥−𝑦 ≫ 0, 𝑥−𝑦 ≥ 0, and 𝑥−𝑦 > 0, respectively.
We let all vectors in this lecture be column vectors; 𝑥𝑇 denotes the transpose of 𝑥 (i.e., a row vector).
Let 𝜄𝑛 denote a column vector composed of 𝑛 ones, i.e. 𝜄𝑛 = (1, 1, … , 1)𝑇 .
Let 𝑒𝑖 denote a vector (of arbitrary size) containing zeros except for the 𝑖 th position where it is one.
We denote matrices by capital letters. For an arbitrary matrix 𝐴, 𝑎𝑖,𝑗 represents the entry in its 𝑖 th row and 𝑗 th column.
𝑎⋅𝑗 and 𝑎𝑖⋅ denote the 𝑗 th column and 𝑖 th row of 𝐴, respectively.

9.2 Model Ingredients and Assumptions

A pair (𝐴, 𝐵) of 𝑚 × 𝑛 non-negative matrices defines an economy.
• 𝑚 is the number of activities (or sectors)
• 𝑛 is the number of goods (produced and/or consumed).
• 𝐴 is called the input matrix; 𝑎𝑖,𝑗 denotes the amount of good 𝑗 consumed by activity 𝑖
• 𝐵 is called the output matrix; 𝑏𝑖,𝑗 represents the amount of good 𝑗 produced by activity 𝑖

Two key assumptions restrict economy (𝐴, 𝐵):
• Assumption I: (every good that is consumed is also produced)

𝑏.,𝑗 > 0 ∀𝑗 = 1, 2, … , 𝑛

• Assumption II: (no free lunch)

𝑎𝑖,. > 0 ∀𝑖 = 1, 2, … , 𝑚
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A semi-positive intensity 𝑚-vector 𝑥 denotes levels at which activities are operated.
Therefore,

• vector 𝑥𝑇 𝐴 gives the total amount of goods used in production
• vector 𝑥𝑇 𝐵 gives total outputs

An economy (𝐴, 𝐵) is said to be productive, if there exists a non-negative intensity vector 𝑥 ≥ 0 such that 𝑥𝑇 𝐵 > 𝑥𝑇 𝐴.
The semi-positive 𝑛-vector 𝑝 contains prices assigned to the 𝑛 goods.
The 𝑝 vector implies cost and revenue vectors

• the vector 𝐴𝑝 tells costs of the vector of activities
• the vector 𝐵𝑝 tells revenues from the vector of activities

Satisfaction or a property of an input-output pair (𝐴, 𝐵) called irreducibility (or indecomposability) determines whether
an economy can be decomposed into multiple “sub-economies”.
Definition: For an economy (𝐴, 𝐵), the set of goods 𝑆 ⊂ {1, 2, … , 𝑛} is called an independent subset if it is possible
to produce every good in 𝑆 without consuming goods from outside 𝑆. Formally, the set 𝑆 is independent if ∃𝑇 ⊂
{1, 2, … , 𝑚} (a subset of activities) such that 𝑎𝑖,𝑗 = 0 ∀𝑖 ∈ 𝑇 and 𝑗 ∈ 𝑆𝑐 and for all 𝑗 ∈ 𝑆, ∃𝑖 ∈ 𝑇 for which 𝑏𝑖,𝑗 > 0.
The economy is irreducible if there are no proper independent subsets.
We study two examples, both in Chapter 9.6 of Gale [Gale, 1989]

# (1) Irreducible (A, B) example: α_0 = β_0
A1 = np.array([[0, 1, 0, 0],

[1, 0, 0, 1],
[0, 0, 1, 0]])

B1 = np.array([[1, 0, 0, 0],
[0, 0, 2, 0],
[0, 1, 0, 1]])

# (2) Reducible (A, B) example: β_0 < α_0
A2 = np.array([[0, 1, 0, 0, 0, 0],

[1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 1, 0]])

B2 = np.array([[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 2, 0],
[0, 0, 0, 1, 0, 1]])

The following code sets up our first Neumann economy or Neumann instance

n1 = Neumann(A1, B1)
n1

Generalized von Neumann expanding model:
- number of goods : 4
- number of activities : 3

Assumptions:

(continues on next page)
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- AI: every column of B has a positive entry : True
- AII: every row of A has a positive entry : True

Here is a second instance of a Neumann economy

n2 = Neumann(A2, B2)
n2

Generalized von Neumann expanding model:
- number of goods : 6
- number of activities : 5

Assumptions:
- AI: every column of B has a positive entry : True
- AII: every row of A has a positive entry : True

9.3 Dynamic Interpretation

Attach a time index 𝑡 to the preceding objects, regard an economy as a dynamic system, and study sequences

{(𝐴𝑡, 𝐵𝑡)}𝑡≥0, {𝑥𝑡}𝑡≥0, {𝑝𝑡}𝑡≥0

An interesting special case holds the technology process constant and investigates the dynamics of quantities and prices
only.
Accordingly, in the rest of this lecture, we assume that (𝐴𝑡, 𝐵𝑡) = (𝐴, 𝐵) for all 𝑡 ≥ 0.
A crucial element of the dynamic interpretation involves the timing of production.
We assume that production (consumption of inputs) takes place in period 𝑡, while the consequent output materializes in
period 𝑡 + 1, i.e., consumption of 𝑥𝑇

𝑡 𝐴 in period 𝑡 results in 𝑥𝑇
𝑡 𝐵 amounts of output in period 𝑡 + 1.

These timing conventions imply the following feasibility condition:

𝑥𝑇
𝑡 𝐵 ≥ 𝑥𝑇

𝑡+1𝐴 ∀𝑡 ≥ 1

which asserts that no more goods can be used today than were produced yesterday.
Accordingly, 𝐴𝑝𝑡 tells the costs of production in period 𝑡 and 𝐵𝑝𝑡 tells revenues in period 𝑡 + 1.

9.3.1 Balanced Growth

We follow John von Neumann in studying “balanced growth”.
Let ./ denote an elementwise division of one vector by another and let 𝛼 > 0 be a scalar.
Then balanced growth is a situation in which

𝑥𝑡+1./𝑥𝑡 = 𝛼, ∀𝑡 ≥ 0

With balanced growth, the law of motion of 𝑥 is evidently 𝑥𝑡+1 = 𝛼𝑥𝑡 and so we can rewrite the feasibility constraint as

𝑥𝑇
𝑡 𝐵 ≥ 𝛼𝑥𝑇

𝑡 𝐴 ∀𝑡
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In the same spirit, define 𝛽 ∈ ℝ as the interest factor per unit of time.
We assume that it is always possible to earn a gross return equal to the constant interest factor 𝛽 by investing “outside the
model”.
Under this assumption about outside investment opportunities, a no-arbitrage condition gives rise to the following (no
profit) restriction on the price sequence:

𝛽𝐴𝑝𝑡 ≥ 𝐵𝑝𝑡 ∀𝑡

This says that production cannot yield a return greater than that offered by the outside investment opportunity (here we
compare values in period 𝑡 + 1).
The balanced growth assumption allows us to drop time subscripts and conduct an analysis purely in terms of a time-
invariant growth rate 𝛼 and interest factor 𝛽.

9.4 Duality

Two problems are connected by a remarkable dual relationship between technological and valuation characteristics of the
economy:
Definition: The technological expansion problem (TEP) for the economy (𝐴, 𝐵) is to find a semi-positive𝑚-vector 𝑥 > 0
and a number 𝛼 ∈ ℝ that satisfy

max
𝛼

𝛼
s.t. 𝑥𝑇 𝐵 ≥ 𝛼𝑥𝑇 𝐴

Theorem 9.3 of David Gale’s book [Gale, 1989] asserts that if Assumptions I and II are both satisfied, then a maximum
value of 𝛼 exists and that it is positive.
The maximal value is called the technological expansion rate and is denoted by 𝛼0. The associated intensity vector 𝑥0 is
the optimal intensity vector.
Definition: The economic expansion problem (EEP) for (𝐴, 𝐵) is to find a semi-positive 𝑛-vector 𝑝 > 0 and a number
𝛽 ∈ ℝ that satisfy

min
𝛽

𝛽

s.t. 𝐵𝑝 ≤ 𝛽𝐴𝑝

Assumptions I and II imply existence of a minimum value 𝛽0 > 0 called the economic expansion rate.
The corresponding price vector 𝑝0 is the optimal price vector.
Because the criterion functions in the technological expansion problem and the economical expansion problem are both
linearly homogeneous, the optimality of 𝑥0 and 𝑝0 are defined only up to a positive scale factor.
For convenience (and to emphasize a close connection to zero-sum games), we normalize both vectors 𝑥0 and 𝑝0 to have
unit length.
A standard duality argument (see Lemma 9.4. in (Gale, 1960) [Gale, 1989]) implies that under Assumptions I and II,
𝛽0 ≤ 𝛼0.
But to deduce that 𝛽0 ≥ 𝛼0, Assumptions I and II are not sufficient.
Therefore, von Neumann [von Neumann, 1937] went on to prove the following remarkable “duality” result that connects
TEP and EEP.
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Theorem 1 (von Neumann): If the economy (𝐴, 𝐵) satisfies Assumptions I and II, then there exist (𝛾∗, 𝑥0, 𝑝0), where
𝛾∗ ∈ [𝛽0, 𝛼0] ⊂ ℝ, 𝑥0 > 0 is an 𝑚-vector, 𝑝0 > 0 is an 𝑛-vector, and the following arbitrage true

𝑥𝑇
0 𝐵 ≥ 𝛾∗𝑥𝑇

0 𝐴
𝐵𝑝0 ≤ 𝛾∗𝐴𝑝0

𝑥𝑇
0 (𝐵 − 𝛾∗𝐴) 𝑝0 = 0

Note: Proof (Sketch): Assumption I and II imply that there exist (𝛼0, 𝑥0) and (𝛽0, 𝑝0) that solve the TEP and EEP,
respectively. If 𝛾∗ > 𝛼0, then by definition of 𝛼0, there cannot exist a semi-positive 𝑥 that satisfies 𝑥𝑇 𝐵 ≥ 𝛾∗𝑥𝑇 𝐴.
Similarly, if 𝛾∗ < 𝛽0, there is no semi-positive 𝑝 for which 𝐵𝑝 ≤ 𝛾∗𝐴𝑝. Let 𝛾∗ ∈ [𝛽0, 𝛼0], then 𝑥𝑇

0 𝐵 ≥ 𝛼0𝑥𝑇
0 𝐴 ≥

𝛾∗𝑥𝑇
0 𝐴. Moreover, 𝐵𝑝0 ≤ 𝛽0𝐴𝑝0 ≤ 𝛾∗𝐴𝑝0. These two inequalities imply 𝑥0 (𝐵 − 𝛾∗𝐴) 𝑝0 = 0.

Here the constant 𝛾∗ is both an expansion factor and an interest factor (not necessarily optimal).
We have already encountered and discussed the first two inequalities that represent feasibility and no-profit conditions.
Moreover, the equality 𝑥𝑇

0 (𝐵 − 𝛾∗𝐴) 𝑝0 = 0 concisely expresses the requirements that if any good grows at a rate larger
than 𝛾∗ (i.e., if it is oversupplied), then its price must be zero; and that if any activity provides negative profit, it must be
unused.
Therefore, the conditions stated in Theorem I ex encode all equilibrium conditions.
So Theorem I essentially states that under Assumptions I and II there always exists an equilibrium (𝛾∗, 𝑥0, 𝑝0) with
balanced growth.
Note that Theorem I is silent about uniqueness of the equilibrium. In fact, it does not rule out (trivial) cases with 𝑥𝑇

0 𝐵𝑝0 =
0 so that nothing of value is produced.
To exclude such uninteresting cases, Kemeny, Morgenstern and Thomspson [Kemeny et al., 1956] add an extra require-
ment

𝑥𝑇
0 𝐵𝑝0 > 0

and call the associated equilibria economic solutions.
They show that this extra condition does not affect the existence result, while it significantly reduces the number of
(relevant) solutions.

9.5 Interpretation as Two-player Zero-sum Game

To compute the equilibrium (𝛾∗, 𝑥0, 𝑝0), we follow the algorithm proposed by Hamburger, Thompson and Weil (1967),
building on the key insight that an equilibrium (with balanced growth) can be solves a particular two-player zero-sum
game. First, we introduce some notation.
Consider the 𝑚 × 𝑛 matrix 𝐶 as a payoff matrix, with the entries representing payoffs from the minimizing column
player to themaximizing row player and assume that the players can use mixed strategies. Thus,

• the row player chooses the 𝑚-vector 𝑥 > 0 subject to 𝜄𝑇
𝑚𝑥 = 1

• the column player chooses the 𝑛-vector 𝑝 > 0 subject to 𝜄𝑇
𝑛 𝑝 = 1.

Definition: The 𝑚 × 𝑛 matrix game 𝐶 has the solution (𝑥∗, 𝑝∗, 𝑉 (𝐶)) in mixed strategies if

(𝑥∗)𝑇 𝐶𝑒𝑗 ≥ 𝑉 (𝐶) ∀𝑗 ∈ {1, … , 𝑛} and (𝑒𝑖)𝑇 𝐶𝑝∗ ≤ 𝑉 (𝐶) ∀𝑖 ∈ {1, … , 𝑚}

The number 𝑉 (𝐶) is called the value of the game.
From the above definition, it is clear that the value 𝑉 (𝐶) has two alternative interpretations:
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• by playing the appropriate mixed stategy, the maximizing player can assure himself at least 𝑉 (𝐶) (no matter what
the column player chooses)

• by playing the appropriate mixed stategy, the minimizing player can make sure that the maximizing player will not
get more than 𝑉 (𝐶) (irrespective of what is the maximizing player’s choice)

A famous theorem of Nash (1951) tells us that there always exists a mixed strategy Nash equilibrium for any finite two-
player zero-sum game.
Moreover, von Neumann’s Minmax Theorem [von Neumann, 1928] implies that

𝑉 (𝐶) = max
𝑥

min
𝑝

𝑥𝑇 𝐶𝑝 = min
𝑝
max

𝑥
𝑥𝑇 𝐶𝑝 = (𝑥∗)𝑇 𝐶𝑝∗

9.5.1 Connection with Linear Programming (LP)

Nash equilibria of a finite two-player zero-sum game solve a linear programming problem.
To see this, we introduce the following notation

• For a fixed 𝑥, let 𝑣 be the value of the minimization problem: 𝑣 ≡ min𝑝 𝑥𝑇 𝐶𝑝 = min𝑗 𝑥𝑇 𝐶𝑒𝑗

• For a fixed 𝑝, let 𝑢 be the value of the maximization problem: 𝑢 ≡ max𝑥 𝑥𝑇 𝐶𝑝 = max𝑖(𝑒𝑖)𝑇 𝐶𝑝
Then the max-min problem (the game from the maximizing player’s point of view) can be written as the primal LP

𝑉 (𝐶) =max 𝑣
s.t. 𝑣𝜄𝑇

𝑛 ≤ 𝑥𝑇 𝐶
𝑥 ≥ 0

𝜄𝑇
𝑛 𝑥 = 1

while the min-max problem (the game from the minimizing player’s point of view) is the dual LP

𝑉 (𝐶) =min 𝑢
s.t. 𝑢𝜄𝑚 ≥ 𝐶𝑝

𝑝 ≥ 0
𝜄𝑇
𝑚𝑝 = 1

Hamburger, Thompson and Weil [Hamburger et al., 1967] view the input-output pair of the economy as payoff matrices
of two-player zero-sum games.
Using this interpretation, they restate Assumption I and II as follows

𝑉 (−𝐴) < 0 and 𝑉 (𝐵) > 0

Note: Proof (Sketch):
• ⇒ 𝑉 (𝐵) > 0 implies 𝑥𝑇

0 𝐵 ≫ 0, where 𝑥0 is a maximizing vector. Since 𝐵 is non-negative, this requires that
each column of 𝐵 has at least one positive entry, which is Assumption I.

• ⇐ From Assumption I and the fact that 𝑝 > 0, it follows that 𝐵𝑝 > 0. This implies that the maximizing player
can always choose 𝑥 so that 𝑥𝑇 𝐵𝑝 > 0 so that it must be the case that 𝑉 (𝐵) > 0.

In order to (re)state Theorem I in terms of a particular two-player zero-sum game, we define a matrix for 𝛾 ∈ ℝ

𝑀(𝛾) ≡ 𝐵 − 𝛾𝐴

For fixed 𝛾, treating 𝑀(𝛾) as a matrix game, calculating the solution of the game implies
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• If 𝛾 > 𝛼0, then for all 𝑥 > 0, there ∃𝑗 ∈ {1, … , 𝑛}, s.t. [𝑥𝑇 𝑀(𝛾)]𝑗 < 0 implying that 𝑉 (𝑀(𝛾)) < 0.
• If 𝛾 < 𝛽0, then for all 𝑝 > 0, there ∃𝑖 ∈ {1, … , 𝑚}, s.t. [𝑀(𝛾)𝑝]𝑖 > 0 implying that 𝑉 (𝑀(𝛾)) > 0.
• If 𝛾 ∈ {𝛽0, 𝛼0}, then (by Theorem I) the optimal intensity and price vectors 𝑥0 and 𝑝0 satisfy

𝑥𝑇
0 𝑀(𝛾) ≥ 0𝑇 and 𝑀(𝛾)𝑝0 ≤ 0

That is, (𝑥0, 𝑝0, 0) is a solution of the game 𝑀(𝛾) so that 𝑉 (𝑀(𝛽0)) = 𝑉 (𝑀(𝛼0)) = 0.
• If 𝛽0 < 𝛼0 and 𝛾 ∈ (𝛽0, 𝛼0), then 𝑉 (𝑀(𝛾)) = 0.

Moreover, if 𝑥′ is optimal for the maximizing player in 𝑀(𝛾′) for 𝛾′ ∈ (𝛽0, 𝛼0) and 𝑝″ is optimal for the minimizing
player in 𝑀(𝛾″) where 𝛾″ ∈ (𝛽0, 𝛾′), then (𝑥′, 𝑝″, 0) is a solution for 𝑀(𝛾) ∀𝛾 ∈ (𝛾″, 𝛾′).
Proof (Sketch): If 𝑥′ is optimal for a maximizing player in game 𝑀(𝛾′), then (𝑥′)𝑇 𝑀(𝛾′) ≥ 0𝑇 and so for all 𝛾 < 𝛾′.

(𝑥′)𝑇 𝑀(𝛾) = (𝑥′)𝑇 𝑀(𝛾′) + (𝑥′)𝑇 (𝛾′ − 𝛾)𝐴 ≥ 0𝑇

hence 𝑉 (𝑀(𝛾)) ≥ 0. If 𝑝″ is optimal for a minimizing player in game 𝑀(𝛾″), then 𝑀(𝛾)𝑝 ≤ 0 and so for all 𝛾″ < 𝛾

𝑀(𝛾)𝑝″ = 𝑀(𝛾″) + (𝛾″ − 𝛾)𝐴𝑝″ ≤ 0

hence 𝑉 (𝑀(𝛾)) ≤ 0.
It is clear from the above argument that 𝛽0, 𝛼0 are the minimal and maximal 𝛾 for which 𝑉 (𝑀(𝛾)) = 0.
Furthermore, Hamburger et al. [Hamburger et al., 1967] show that the function 𝛾 ↦ 𝑉 (𝑀(𝛾)) is continuous and
nonincreasing in 𝛾.
This suggests an algorithm to compute (𝛼0, 𝑥0) and (𝛽0, 𝑝0) for a given input-output pair (𝐴, 𝐵).

9.5.2 Algorithm

Hamburger, Thompson and Weil [Hamburger et al., 1967] propose a simple bisection algorithm to find the minimal and
maximal roots (i.e. 𝛽0 and 𝛼0) of the function 𝛾 ↦ 𝑉 (𝑀(𝛾)).

Step 1

First, notice that we can easily find trivial upper and lower bounds for 𝛼0 and 𝛽0.
• TEP requires that 𝑥𝑇 (𝐵 − 𝛼𝐴) ≥ 0𝑇 and 𝑥 > 0, so if 𝛼 is so large that max𝑖{[(𝐵 − 𝛼𝐴)𝜄𝑛]𝑖} < 0, then TEP
ceases to have a solution.

Accordingly, let UB be the 𝛼∗ that solves max𝑖{[(𝐵 − 𝛼∗𝐴)𝜄𝑛]𝑖} = 0.
• Similar to the upper bound, if 𝛽 is so low that min𝑗{[𝜄𝑇

𝑚(𝐵 − 𝛽𝐴)]𝑗} > 0, then the EEP has no solution and so
we can define LB as the 𝛽∗ that solves min𝑗{[𝜄𝑇

𝑚(𝐵 − 𝛽∗𝐴)]𝑗} = 0.
The bounds method calculates these trivial bounds for us

n1.bounds()

(1.0, 2.0)
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Step 2

Compute 𝛼0 and 𝛽0

• Finding 𝛼0

1. Fix 𝛾 = 𝑈𝐵+𝐿𝐵
2 and compute the solution of the two-player zero-sum game associated with 𝑀(𝛾). We can

use either the primal or the dual LP problem.
2. If 𝑉 (𝑀(𝛾)) ≥ 0, then set 𝐿𝐵 = 𝛾, otherwise let 𝑈𝐵 = 𝛾.
3. Iterate on 1. and 2. until |𝑈𝐵 − 𝐿𝐵| < 𝜖.

• Finding 𝛽0

1. Fix 𝛾 = 𝑈𝐵+𝐿𝐵
2 and compute the solution of the two-player zero-sum game associated. with𝑀(𝛾). We can

use either the primal or the dual LP problem.
2. If 𝑉 (𝑀(𝛾)) > 0, then set 𝐿𝐵 = 𝛾, otherwise let 𝑈𝐵 = 𝛾.
3. Iterate on 1. and 2. until |𝑈𝐵 − 𝐿𝐵| < 𝜖.

• Existence: Since 𝑉 (𝑀(𝐿𝐵)) > 0 and 𝑉 (𝑀(𝑈𝐵)) < 0 and 𝑉 (𝑀(⋅)) is a continuous, nonincreasing function,
there is at least one 𝛾 ∈ [𝐿𝐵, 𝑈𝐵], s.t. 𝑉 (𝑀(𝛾)) = 0.

The zerosum method calculates the value and optimal strategies associated with a given 𝛾.

γ = 2

print(f'Value of the game with γ = {γ}')
print(n1.zerosum(γ=γ)[0])
print('Intensity vector (from the primal)')
print(n1.zerosum(γ=γ)[1])
print('Price vector (from the dual)')
print(n1.zerosum(γ=γ, dual=True)[1])

Value of the game with γ = 2
-0.24
Intensity vector (from the primal)
[0.32 0.28 0.4 ]
Price vector (from the dual)
[0.4 0.32 0.28 0. ]

numb_grid = 100
γ_grid = np.linspace(0.4, 2.1, numb_grid)

value_ex1_grid = np.asarray([n1.zerosum(γ=γ_grid[i])[0]
for i in range(numb_grid)])

value_ex2_grid = np.asarray([n2.zerosum(γ=γ_grid[i])[0]
for i in range(numb_grid)])

fig, axes = plt.subplots(1, 2, figsize=(14, 5), sharey=True)
fig.suptitle(r'The function $V(M(\gamma))$', fontsize=16)

for ax, grid, N, i in zip(axes, (value_ex1_grid, value_ex2_grid),
(n1, n2), (1, 2)):

ax.plot(γ_grid, grid)
ax.set(title=f'Example {i}', xlabel='$\gamma$')
ax.axhline(0, c='k', lw=1)

(continues on next page)
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(continued from previous page)

ax.axvline(N.bounds()[0], c='r', ls='--', label='lower bound')
ax.axvline(N.bounds()[1], c='g', ls='--', label='upper bound')

plt.show()

The expansion method implements the bisection algorithm for 𝛼0 (and uses the primal LP problem for 𝑥0)

α_0, x, p = n1.expansion()
print(f'α_0 = {α_0}')
print(f'x_0 = {x}')
print(f'The corresponding p from the dual = {p}')

α_0 = 1.2599210478365421
x_0 = [0.33 0.26 0.41]
The corresponding p from the dual = [0.41 0.33 0.26 0. ]

The interest method implements the bisection algorithm for 𝛽0 (and uses the dual LP problem for 𝑝0)

β_0, x, p = n1.interest()
print(f'β_0 = {β_0}')
print(f'p_0 = {p}')
print(f'The corresponding x from the primal = {x}')

β_0 = 1.2599210478365421
p_0 = [0.41 0.33 0.26 0. ]
The corresponding x from the primal = [0.33 0.26 0.41]

Of course, when 𝛾∗ is unique, it is irrelevant which one of the two methods we use – both work.
In particular, as will be shown below, in case of an irreducible (𝐴, 𝐵) (like in Example 1), the maximal and minimal
roots of 𝑉 (𝑀(𝛾)) necessarily coincide implying a ‘‘full duality’’ result, i.e. 𝛼0 = 𝛽0 = 𝛾∗ so that the expansion (and
interest) rate 𝛾∗ is unique.
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9.5.3 Uniqueness and Irreducibility

As an illustration, compute first the maximal and minimal roots of 𝑉 (𝑀(⋅)) for our Example 2 that has a reducible
input-output pair (𝐴, 𝐵)

α_0, x, p = n2.expansion()
print(f'α_0 = {α_0}')
print(f'x_0 = {x}')
print(f'The corresponding p from the dual = {p}')

α_0 = 1.259921052493155
x_0 = [5.27e-10 0.00e+00 3.27e-01 2.60e-01 4.13e-01]
The corresponding p from the dual = [0. 0.21 0.33 0.26 0.21 0. ]

β_0, x, p = n2.interest()
print(f'β_0 = {β_0}')
print(f'p_0 = {p}')
print(f'The corresponding x from the primal = {x}')

β_0 = 1.0000000009313226
p_0 = [ 5.00e-01 5.00e-01 -1.55e-09 -1.24e-09 -9.31e-10 0.00e+00]
The corresponding x from the primal = [-0. 0. 0.25 0.25 0.5 ]

As we can see, with a reducible (𝐴, 𝐵), the roots found by the bisection algorithmsmight differ, so there might be multiple
𝛾∗ that make the value of the game with 𝑀(𝛾∗) zero. (see the figure above).
Indeed, although the von Neumann theorem assures existence of the equilibrium, Assumptions I and II are not sufficient
for uniqueness. Nonetheless, Kemeny et al. (1967) show that there are at most finitely many economic solutions, meaning
that there are only finitely many 𝛾∗ that satisfy 𝑉 (𝑀(𝛾∗)) = 0 and 𝑥𝑇

0 𝐵𝑝0 > 0 and that for each such 𝛾∗
𝑖 , there is a

self-contained part of the economy (a sub-economy) that in equilibrium can expand independently with the expansion
coefficient 𝛾∗

𝑖 .
The following theorem (see Theorem 9.10. in Gale [Gale, 1989]) asserts that imposing irreducibility is sufficient for
uniqueness of (𝛾∗, 𝑥0, 𝑝0).
Theorem II: Adopt the conditions of Theorem 1. If the economy (𝐴, 𝐵) is irreducible, then 𝛾∗ = 𝛼0 = 𝛽0.

9.5.4 A Special Case

There is a special (𝐴, 𝐵) that allows us to simplify the solution method significantly by invoking the powerful Perron-
Frobenius theorem for non-negative matrices.
Definition: We call an economy simple if it satisfies

• 𝑛 = 𝑚
• Each activity produces exactly one good
• Each good is produced by one and only one activity.

These assumptions imply that 𝐵 = 𝐼𝑛, i.e., that 𝐵 can be written as an identity matrix (possibly after reshuffling its rows
and columns).
The simple model has the following special property (Theorem 9.11. in Gale [Gale, 1989]): if 𝑥0 and 𝛼0 > 0 solve the
TEP with (𝐴, 𝐼𝑛), then

𝑥𝑇
0 = 𝛼0𝑥𝑇

0 𝐴 ⇔ 𝑥𝑇
0 𝐴 = ( 1

𝛼0
) 𝑥𝑇

0
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The latter shows that 1/𝛼0 is a positive eigenvalue of 𝐴 and 𝑥0 is the corresponding non-negative left eigenvector.
The classic result of Perron and Frobenius implies that a non-negative matrix has a non-negative eigenvalue-eigenvector
pair.
Moreover, if 𝐴 is irreducible, then the optimal intensity vector 𝑥0 is positive and unique up to multiplication by a positive
scalar.
Suppose that 𝐴 is reducible with 𝑘 irreducible subsets 𝑆1, … , 𝑆𝑘. Let 𝐴𝑖 be the submatrix corresponding to 𝑆𝑖 and let
𝛼𝑖 and 𝛽𝑖 be the associated expansion and interest factors, respectively. Then we have

𝛼0 = max
𝑖

{𝛼𝑖} and 𝛽0 = min
𝑖

{𝛽𝑖}
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CHAPTER

TEN

USING NEWTON’S METHOD TO SOLVE ECONOMIC MODELS

See also:
GPU: A version of this lecture which makes use of jax to run the code on a GPU is available here

10.1 Overview

Many economic problems involve finding fixed points or zeros (sometimes called “roots”) of functions.
For example, in a simple supply and demand model, an equilibrium price is one that makes excess demand zero.
In other words, an equilibrium is a zero of the excess demand function.
There are various computational techniques for solving for fixed points and zeros.
In this lecture we study an important gradient-based technique called Newton’s method.
Newton’s method does not always work but, in situations where it does, convergence is often fast when compared to other
methods.
The lecture will apply Newton’s method in one-dimensional and multi-dimensional settings to solve fixed-point and zero-
finding problems.

• When finding the fixed point of a function 𝑓 , Newton’s method updates an existing guess of the fixed point by
solving for the fixed point of a linear approximation to the function 𝑓 .

• When finding the zero of a function 𝑓 , Newton’s method updates an existing guess by solving for the zero of a
linear approximation to the function 𝑓 .

To build intuition, we first consider an easy, one-dimensional fixed point problem where we know the solution and solve
it using both successive approximation and Newton’s method.
Then we apply Newton’s method to multi-dimensional settings to solve market for equilibria with multiple goods.
At the end of the lecture we leverage the power of automatic differentiation inautograd to solve a very high-dimensional
equilibrium problem

!pip install autograd

We use the following imports in this lecture

import matplotlib.pyplot as plt
from collections import namedtuple
from scipy.optimize import root
from autograd import jacobian
# Thinly-wrapped numpy to enable automatic differentiation

(continues on next page)
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(continued from previous page)

import autograd.numpy as np

plt.rcParams["figure.figsize"] = (10, 5.7)

10.2 Fixed Point Computation Using Newton’s Method

In this section we solve the fixed point of the law of motion for capital in the setting of the Solow growth model.
We will inspect the fixed point visually, solve it by successive approximation, and then apply Newton’s method to achieve
faster convergence.

10.2.1 The Solow Model

In the Solow growthmodel, assuming Cobb-Douglas production technology and zero population growth, the law ofmotion
for capital is

𝑘𝑡+1 = 𝑔(𝑘𝑡) where 𝑔(𝑘) ∶= 𝑠𝐴𝑘𝛼 + (1 − 𝛿)𝑘 (10.1)

Here
• 𝑘𝑡 is capital stock per worker,
• 𝐴, 𝛼 > 0 are production parameters, 𝛼 < 1
• 𝑠 > 0 is a savings rate, and
• 𝛿 ∈ (0, 1) is a rate of depreciation

In this example, we wish to calculate the unique strictly positive fixed point of 𝑔, the law of motion for capital.
In other words, we seek a 𝑘∗ > 0 such that 𝑔(𝑘∗) = 𝑘∗.

• such a 𝑘∗ is called a steady state, since 𝑘𝑡 = 𝑘∗ implies 𝑘𝑡+1 = 𝑘∗.
Using pencil and paper to solve 𝑔(𝑘) = 𝑘, you will be able to confirm that

𝑘∗ = (𝑠𝐴
𝛿 )

1/(1−𝛼)

10.2.2 Implementation

Let’s store our parameters in namedtuple to help us keep our code clean and concise.

SolowParameters = namedtuple("SolowParameters", ('A', 's', 'α', 'δ'))

This function creates a suitable namedtuple with default parameter values.

def create_solow_params(A=2.0, s=0.3, α=0.3, δ=0.4):
"Creates a Solow model parameterization with default values."
return SolowParameters(A=A, s=s, α=α, δ=δ)

The next two functions implement the law of motion (10.2.1) and store the true fixed point 𝑘∗.
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def g(k, params):
A, s, α, δ = params
return A * s * k**α + (1 - δ) * k

def exact_fixed_point(params):
A, s, α, δ = params
return ((s * A) / δ)**(1/(1 - α))

Here is a function to provide a 45 degree plot of the dynamics.

def plot_45(params, ax, fontsize=14):

k_min, k_max = 0.0, 3.0
k_grid = np.linspace(k_min, k_max, 1200)

# Plot the functions
lb = r"$g(k) = sAk^{\alpha} + (1 - \delta)k$"
ax.plot(k_grid, g(k_grid, params), lw=2, alpha=0.6, label=lb)
ax.plot(k_grid, k_grid, "k--", lw=1, alpha=0.7, label="45")

# Show and annotate the fixed point
kstar = exact_fixed_point(params)
fps = (kstar,)
ax.plot(fps, fps, "go", ms=10, alpha=0.6)
ax.annotate(r"$k^* = (sA / \delta)^{\frac{1}{1-\alpha}}$",

xy=(kstar, kstar),
xycoords="data",
xytext=(20, -20),
textcoords="offset points",
fontsize=fontsize)

ax.legend(loc="upper left", frameon=False, fontsize=fontsize)

ax.set_yticks((0, 1, 2, 3))
ax.set_yticklabels((0.0, 1.0, 2.0, 3.0), fontsize=fontsize)
ax.set_ylim(0, 3)
ax.set_xlabel("$k_t$", fontsize=fontsize)
ax.set_ylabel("$k_{t+1}$", fontsize=fontsize)

Let’s look at the 45 degree diagram for two parameterizations.

params = create_solow_params()
fig, ax = plt.subplots(figsize=(8, 8))
plot_45(params, ax)
plt.show()

10.2. Fixed Point Computation Using Newton’s Method 169



Tools and Techniques for Computational Economics

params = create_solow_params(α=0.05, δ=0.5)
fig, ax = plt.subplots(figsize=(8, 8))
plot_45(params, ax)
plt.show()
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We see that 𝑘∗ is indeed the unique positive fixed point.

Successive Approximation

First let’s compute the fixed point using successive approximation.
In this case, successive approximation means repeatedly updating capital from some initial state 𝑘0 using the law of
motion.
Here’s a time series from a particular choice of 𝑘0.

def compute_iterates(k_0, f, params, n=25):
"Compute time series of length n generated by arbitrary function f."
k = k_0
k_iterates = []
for t in range(n):

(continues on next page)
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(continued from previous page)

k_iterates.append(k)
k = f(k, params)

return k_iterates

params = create_solow_params()
k_0 = 0.25
k_series = compute_iterates(k_0, g, params)
k_star = exact_fixed_point(params)

fig, ax = plt.subplots()
ax.plot(k_series, 'o')
ax.plot([k_star] * len(k_series), 'k--')
ax.set_ylim(0, 3)
plt.show()

Let’s see the output for a long time series.

k_series = compute_iterates(k_0, g, params, n=10_000)
k_star_approx = k_series[-1]
k_star_approx

1.7846741842265788

This is close to the true value.

k_star

1.7846741842265788
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Newton’s Method

In general, when applying Newton’s fixed point method to some function 𝑔, we start with a guess 𝑥0 of the fixed point
and then update by solving for the fixed point of a tangent line at 𝑥0.
To begin with, we recall that the first-order approximation of 𝑔 at 𝑥0 (i.e., the first order Taylor approximation of 𝑔 at 𝑥0)
is the function

̂𝑔(𝑥) ≈ 𝑔(𝑥0) + 𝑔′(𝑥0)(𝑥 − 𝑥0) (10.2)

We solve for the fixed point of ̂𝑔 by calculating the 𝑥1 that solves

𝑥1 = 𝑔(𝑥0) − 𝑔′(𝑥0)𝑥0
1 − 𝑔′(𝑥0)

Generalising the process above, Newton’s fixed point method iterates on

𝑥𝑡+1 = 𝑔(𝑥𝑡) − 𝑔′(𝑥𝑡)𝑥𝑡
1 − 𝑔′(𝑥𝑡)

, 𝑥0 given (10.3)

To implement Newton’s method we observe that the derivative of the law of motion for capital (10.2.1) is

𝑔′(𝑘) = 𝛼𝑠𝐴𝑘𝛼−1 + (1 − 𝛿) (10.4)

Let’s define this:

def Dg(k, params):
A, s, α, δ = params
return α * A * s * k**(α-1) + (1 - δ)

Here’s a function 𝑞 representing (10.2.3).

def q(k, params):
return (g(k, params) - Dg(k, params) * k) / (1 - Dg(k, params))

Now let’s plot some trajectories.

def plot_trajectories(params,
k0_a=0.8, # first initial condition
k0_b=3.1, # second initial condition
n=20, # length of time series
fs=14): # fontsize

fig, axes = plt.subplots(2, 1, figsize=(10, 6))
ax1, ax2 = axes

ks1 = compute_iterates(k0_a, g, params, n)
ax1.plot(ks1, "-o", label="successive approximation")

ks2 = compute_iterates(k0_b, g, params, n)
ax2.plot(ks2, "-o", label="successive approximation")

ks3 = compute_iterates(k0_a, q, params, n)
ax1.plot(ks3, "-o", label="newton steps")

ks4 = compute_iterates(k0_b, q, params, n)
ax2.plot(ks4, "-o", label="newton steps")

(continues on next page)
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for ax in axes:
ax.plot(k_star * np.ones(n), "k--")
ax.legend(fontsize=fs, frameon=False)
ax.set_ylim(0.6, 3.2)
ax.set_yticks((k_star,))
ax.set_yticklabels(("$k^*$",), fontsize=fs)
ax.set_xticks(np.linspace(0, 19, 20))

plt.show()

params = create_solow_params()
plot_trajectories(params)

We can see that Newton’s method converges faster than successive approximation.

10.3 Root-Finding in One Dimension

In the previous section we computed fixed points.
In fact Newton’s method is more commonly associated with the problem of finding zeros of functions.
Let’s discuss this “root-finding” problem and then show how it is connected to the problem of finding fixed points.
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10.3.1 Newton’s Method for Zeros

Let’s suppose we want to find an 𝑥 such that 𝑓(𝑥) = 0 for some smooth function 𝑓 mapping real numbers to real numbers.
Suppose we have a guess 𝑥0 and we want to update it to a new point 𝑥1.
As a first step, we take the first-order approximation of 𝑓 around 𝑥0:

̂𝑓(𝑥) ≈ 𝑓 (𝑥0) + 𝑓 ′ (𝑥0) (𝑥 − 𝑥0)

Now we solve for the zero of ̂𝑓 .
In particular, we set ̂𝑓(𝑥1) = 0 and solve for 𝑥1 to get

𝑥1 = 𝑥0 − 𝑓(𝑥0)
𝑓 ′(𝑥0) , 𝑥0 given

Generalizing the formula above, for one-dimensional zero-finding problems, Newton’s method iterates on

𝑥𝑡+1 = 𝑥𝑡 − 𝑓(𝑥𝑡)
𝑓 ′(𝑥𝑡)

, 𝑥0 given (10.5)

The following code implements the iteration (10.3.1)

def newton(f, Df, x_0, tol=1e-7, max_iter=100_000):
x = x_0

# Implement the zero-finding formula
def q(x):

return x - f(x) / Df(x)

error = tol + 1
n = 0
while error > tol:

n += 1
if(n > max_iter):

raise Exception('Max iteration reached without convergence')
y = q(x)
error = np.abs(x - y)
x = y
print(f'iteration {n}, error = {error:.5f}')

return x

Numerous libraries implement Newton’s method in one dimension, including SciPy, so the code is just for illustrative
purposes.
(That said, when we want to apply Newton’s method using techniques such as automatic differentiation or GPU acceler-
ation, it will be helpful to know how to implement Newton’s method ourselves.)

10.3.2 Application to Finding Fixed Points

Now consider again the Solow fixed-point calculation, where we solve for 𝑘 satisfying 𝑔(𝑘) = 𝑘.
We can convert to this to a zero-finding problem by setting 𝑓(𝑥) ∶= 𝑔(𝑥) − 𝑥.
Any zero of 𝑓 is clearly a fixed point of 𝑔.
Let’s apply this idea to the Solow problem
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params = create_solow_params()
k_star_approx_newton = newton(f=lambda x: g(x, params) - x,

Df=lambda x: Dg(x, params) - 1,
x_0=0.8)

iteration 1, error = 1.27209
iteration 2, error = 0.28180
iteration 3, error = 0.00561
iteration 4, error = 0.00000
iteration 5, error = 0.00000

k_star_approx_newton

1.7846741842265788

The result confirms the descent we saw in the graphs above: a very accurate result is reached with only 5 iterations.

10.4 Multivariate Newton’s Method

In this section, we introduce a two-good problem, present a visualization of the problem, and solve for the equilibrium of
the two-good market using both a zero finder in SciPy and Newton’s method.
We then expand the idea to a larger market with 5,000 goods and compare the performance of the two methods again.
We will see a significant performance gain when using Netwon’s method.

10.4.1 A Two Goods Market Equilibrium

Let’s start by computing the market equilibrium of a two-good problem.
We consider a market for two related products, good 0 and good 1, with price vector 𝑝 = (𝑝0, 𝑝1)
Supply of good 𝑖 at price 𝑝,

𝑞𝑠
𝑖 (𝑝) = 𝑏𝑖

√𝑝𝑖

Demand of good 𝑖 at price 𝑝 is,
𝑞𝑑

𝑖 (𝑝) = exp(−(𝑎𝑖0𝑝0 + 𝑎𝑖1𝑝1)) + 𝑐𝑖

Here 𝑐𝑖, 𝑏𝑖 and 𝑎𝑖𝑗 are parameters.
For example, the two goods might be computer components that are typically used together, in which case they are
complements. Hence demand depends on the price of both components.
The excess demand function is,

𝑒𝑖(𝑝) = 𝑞𝑑
𝑖 (𝑝) − 𝑞𝑠

𝑖 (𝑝), 𝑖 = 0, 1
An equilibrium price vector 𝑝∗ satisfies 𝑒𝑖(𝑝∗) = 0.
We set

𝐴 = (𝑎00 𝑎01
𝑎10 𝑎11

) , 𝑏 = (𝑏0
𝑏1

) and 𝑐 = (𝑐0
𝑐1

)

for this particular question.
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A Graphical Exploration

Since our problem is only two-dimensional, we can use graphical analysis to visualize and help understand the problem.
Our first step is to define the excess demand function

𝑒(𝑝) = (𝑒0(𝑝)
𝑒1(𝑝))

The function below calculates the excess demand for given parameters

def e(p, A, b, c):
return np.exp(- A @ p) + c - b * np.sqrt(p)

Our default parameter values will be

𝐴 = (0.5 0.4
0.8 0.2) , 𝑏 = (1

1) and 𝑐 = (1
1)

A = np.array([
[0.5, 0.4],
[0.8, 0.2]

])
b = np.ones(2)
c = np.ones(2)

At a price level of 𝑝 = (1, 0.5), the excess demand is

ex_demand = e((1.0, 0.5), A, b, c)

print(f'The excess demand for good 0 is {ex_demand[0]:.3f} \n'
f'The excess demand for good 1 is {ex_demand[1]:.3f}')

The excess demand for good 0 is 0.497
The excess demand for good 1 is 0.699

Next we plot the two functions 𝑒0 and 𝑒1 on a grid of (𝑝0, 𝑝1) values, using contour surfaces and lines.
We will use the following function to build the contour plots

def plot_excess_demand(ax, good=0, grid_size=100, grid_max=4, surface=True):

# Create a 100x100 grid
p_grid = np.linspace(0, grid_max, grid_size)
z = np.empty((100, 100))

for i, p_1 in enumerate(p_grid):
for j, p_2 in enumerate(p_grid):

z[i, j] = e((p_1, p_2), A, b, c)[good]

if surface:
cs1 = ax.contourf(p_grid, p_grid, z.T, alpha=0.5)
plt.colorbar(cs1, ax=ax, format="%.6f")

ctr1 = ax.contour(p_grid, p_grid, z.T, levels=[0.0])
ax.set_xlabel("$p_0$")

(continues on next page)
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ax.set_ylabel("$p_1$")
ax.set_title(f'Excess Demand for Good {good}')
plt.clabel(ctr1, inline=1, fontsize=13)

Here’s our plot of 𝑒0:

fig, ax = plt.subplots()
plot_excess_demand(ax, good=0)
plt.show()

Here’s our plot of 𝑒1:

fig, ax = plt.subplots()
plot_excess_demand(ax, good=1)
plt.show()
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We see the black contour line of zero, which tells us when 𝑒𝑖(𝑝) = 0.
For a price vector 𝑝 such that 𝑒𝑖(𝑝) = 0 we know that good 𝑖 is in equilibrium (demand equals supply).
If these two contour lines cross at some price vector 𝑝∗, then 𝑝∗ is an equilibrium price vector.

fig, ax = plt.subplots(figsize=(10, 5.7))
for good in (0, 1):

plot_excess_demand(ax, good=good, surface=False)
plt.show()
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It seems there is an equilibrium close to 𝑝 = (1.6, 1.5).

Using a Multidimensional Root Finder

To solve for 𝑝∗ more precisely, we use a zero-finding algorithm from scipy.optimize.
We supply 𝑝 = (1, 1) as our initial guess.

init_p = np.ones(2)

This uses the modified Powell method to find the zero

%%time
solution = root(lambda p: e(p, A, b, c), init_p, method='hybr')

CPU times: user 132 µs, sys: 15 µs, total: 147 µs
Wall time: 145 µs

Here’s the resulting value:

p = solution.x
p

array([1.57080182, 1.46928838])

This looks close to our guess from observing the figure. We can plug it back into 𝑒 to test that 𝑒(𝑝) ≈ 0:

np.max(np.abs(e(p, A, b, c)))
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2.0383694732117874e-13

This is indeed a very small error.

Adding Gradient Information

In many cases, for zero-finding algorithms applied to smooth functions, supplying the Jacobian of the function leads to
better convergence properties.
Here we manually calculate the elements of the Jacobian

𝐽(𝑝) = (
𝜕𝑒0
𝜕𝑝0

(𝑝) 𝜕𝑒0
𝜕𝑝1

(𝑝)
𝜕𝑒1
𝜕𝑝0

(𝑝) 𝜕𝑒1
𝜕𝑝1

(𝑝))

def jacobian_e(p, A, b, c):
p_0, p_1 = p
a_00, a_01 = A[0, :]
a_10, a_11 = A[1, :]
j_00 = -a_00 * np.exp(-a_00 * p_0) - (b[0]/2) * p_0**(-1/2)
j_01 = -a_01 * np.exp(-a_01 * p_1)
j_10 = -a_10 * np.exp(-a_10 * p_0)
j_11 = -a_11 * np.exp(-a_11 * p_1) - (b[1]/2) * p_1**(-1/2)
J = [[j_00, j_01],

[j_10, j_11]]
return np.array(J)

%%time
solution = root(lambda p: e(p, A, b, c),

init_p,
jac=lambda p: jacobian_e(p, A, b, c),
method='hybr')

CPU times: user 266 µs, sys: 30 µs, total: 296 µs
Wall time: 257 µs

Now the solution is even more accurate (although, in this low-dimensional problem, the difference is quite small):

p = solution.x
np.max(np.abs(e(p, A, b, c)))

1.3322676295501878e-15

Using Newton’s Method

Now let’s use Newton’s method to compute the equilibrium price using the multivariate version of Newton’s method

𝑝𝑛+1 = 𝑝𝑛 − 𝐽𝑒(𝑝𝑛)−1𝑒(𝑝𝑛) (10.6)

This is a multivariate version of (10.3.1)
(Here 𝐽𝑒(𝑝𝑛) is the Jacobian of 𝑒 evaluated at 𝑝𝑛.)
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The iteration starts from some initial guess of the price vector 𝑝0.
Here, instead of coding Jacobian by hand, We use the jacobian() function in the autograd library to auto-
differentiate and calculate the Jacobian.
With only slight modification, we can generalize our previous attempt to multi-dimensional problems

def newton(f, x_0, tol=1e-5, max_iter=10):
x = x_0
q = lambda x: x - np.linalg.solve(jacobian(f)(x), f(x))
error = tol + 1
n = 0
while error > tol:

n+=1
if(n > max_iter):

raise Exception('Max iteration reached without convergence')
y = q(x)
if(any(np.isnan(y))):

raise Exception('Solution not found with NaN generated')
error = np.linalg.norm(x - y)
x = y
print(f'iteration {n}, error = {error:.5f}')

print('\n' + f'Result = {x} \n')
return x

def e(p, A, b, c):
return np.exp(- np.dot(A, p)) + c - b * np.sqrt(p)

We find the algorithm terminates in 4 steps

%%time
p = newton(lambda p: e(p, A, b, c), init_p)

iteration 1, error = 0.62515
iteration 2, error = 0.11152
iteration 3, error = 0.00258
iteration 4, error = 0.00000

Result = [1.57080182 1.46928838]

CPU times: user 2.36 ms, sys: 263 µs, total: 2.62 ms
Wall time: 2.22 ms

np.max(np.abs(e(p, A, b, c)))

1.461053500406706e-13

The result is very accurate.
With the larger overhead, the speed is not better than the optimized scipy function.
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10.4.2 A High-Dimensional Problem

Our next step is to investigate a large market with 3,000 goods.
A JAX version of this section using GPU accelerated linear algebra and automatic differentiation is available here
The excess demand function is essentially the same, but now the matrix 𝐴 is 3000 × 3000 and the parameter vectors 𝑏
and 𝑐 are 3000 × 1.

dim = 3000
np.random.seed(123)

# Create a random matrix A and normalize the rows to sum to one
A = np.random.rand(dim, dim)
A = np.asarray(A)
s = np.sum(A, axis=0)
A = A / s

# Set up b and c
b = np.ones(dim)
c = np.ones(dim)

Here’s our initial condition

init_p = np.ones(dim)

%%time
p = newton(lambda p: e(p, A, b, c), init_p)

iteration 1, error = 23.22267

iteration 2, error = 3.94538

iteration 3, error = 0.08500

iteration 4, error = 0.00004

iteration 5, error = 0.00000

Result = [1.50185286 1.49865815 1.50028285 ... 1.50875149 1.48724784 1.48577532]

CPU times: user 29.4 s, sys: 156 ms, total: 29.5 s
Wall time: 27.6 s

np.max(np.abs(e(p, A, b, c)))

1.5543122344752192e-15

With the same tolerance, we compare the runtime and accuracy of Newton’s method to SciPy’s root function
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%%time
solution = root(lambda p: e(p, A, b, c),

init_p,
jac=lambda p: jacobian(e)(p, A, b, c),
method='hybr',
tol=1e-5)

CPU times: user 32.4 s, sys: 88.3 ms, total: 32.5 s
Wall time: 32.2 s

p = solution.x
np.max(np.abs(e(p, A, b, c)))

8.295585953721485e-07

10.5 Exercises

Exercise 10.5.1
Consider a three-dimensional extension of the Solow fixed point problem with

𝐴 = ⎛⎜
⎝

2 3 3
2 4 2
1 5 1

⎞⎟
⎠

, 𝑠 = 0.2, 𝛼 = 0.5, 𝛿 = 0.8

As before the law of motion is

𝑘𝑡+1 = 𝑔(𝑘𝑡) where 𝑔(𝑘) ∶= 𝑠𝐴𝑘𝛼 + (1 − 𝛿)𝑘

However 𝑘𝑡 is now a 3 × 1 vector.
Solve for the fixed point using Newton’s method with the following initial values:

𝑘10 = (1, 1, 1)
𝑘20 = (3, 5, 5)
𝑘30 = (50, 50, 50)

Hint:
• The computation of the fixed point is equivalent to computing 𝑘∗ such that 𝑓(𝑘∗) − 𝑘∗ = 0.
• If you are unsure about your solution, you can start with the solved example:

𝐴 = ⎛⎜
⎝

2 0 0
0 2 0
0 0 2

⎞⎟
⎠

with 𝑠 = 0.3, 𝛼 = 0.3, and 𝛿 = 0.4 and starting value:

𝑘0 = (1, 1, 1)

The result should converge to the analytical solution.

184 Chapter 10. Using Newton’s Method to Solve Economic Models



Tools and Techniques for Computational Economics

Solution to Exercise 10.5.1
Let’s first define the parameters for this problem

A = np.array([[2.0, 3.0, 3.0],
[2.0, 4.0, 2.0],
[1.0, 5.0, 1.0]])

s = 0.2
α = 0.5
δ = 0.8

initLs = [np.ones(3),
np.array([3.0, 5.0, 5.0]),
np.repeat(50.0, 3)]

Then define the multivariate version of the formula for the (10.2.1)

def multivariate_solow(k, A=A, s=s, α=α, δ=δ):
return (s * np.dot(A, k**α) + (1 - δ) * k)

Let’s run through each starting value and see the output

attempt = 1
for init in initLs:

print(f'Attempt {attempt}: Starting value is {init} \n')
%time k = newton(lambda k: multivariate_solow(k) - k, \

init)
print('-'*64)
attempt += 1

Attempt 1: Starting value is [1. 1. 1.]

iteration 1, error = 50.49630
iteration 2, error = 41.10937
iteration 3, error = 4.29413
iteration 4, error = 0.38543
iteration 5, error = 0.00544
iteration 6, error = 0.00000

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 4.51 ms, sys: 4 µs, total: 4.52 ms
Wall time: 3.87 ms
----------------------------------------------------------------
Attempt 2: Starting value is [3. 5. 5.]

iteration 1, error = 2.07011
iteration 2, error = 0.12642
iteration 3, error = 0.00060
iteration 4, error = 0.00000

Result = [3.84058108 3.87071771 3.41091933]

(continues on next page)
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CPU times: user 2.87 ms, sys: 0 ns, total: 2.87 ms
Wall time: 2.48 ms
----------------------------------------------------------------
Attempt 3: Starting value is [50. 50. 50.]

iteration 1, error = 73.00943
iteration 2, error = 6.49379
iteration 3, error = 0.68070
iteration 4, error = 0.01620
iteration 5, error = 0.00001
iteration 6, error = 0.00000

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 3.73 ms, sys: 0 ns, total: 3.73 ms
Wall time: 3.3 ms
----------------------------------------------------------------

We find that the results are invariant to the starting values given the well-defined property of this question.
But the number of iterations it takes to converge is dependent on the starting values.
Let substitute the output back to the formulate to check our last result

multivariate_solow(k) - k

array([-4.4408921e-16, -4.4408921e-16, 4.4408921e-16])

Note the error is very small.
We can also test our results on the known solution

A = np.array([[2.0, 0.0, 0.0],
[0.0, 2.0, 0.0],
[0.0, 0.0, 2.0]])

s = 0.3
α = 0.3
δ = 0.4

init = np.repeat(1.0, 3)

%time k = newton(lambda k: multivariate_solow(k, A=A, s=s, α=α, δ=δ) - k, \
init)

iteration 1, error = 1.57459
iteration 2, error = 0.21345
iteration 3, error = 0.00205
iteration 4, error = 0.00000

Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 2.76 ms, sys: 0 ns, total: 2.76 ms
Wall time: 2.39 ms
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The result is very close to the ground truth but still slightly different.

%time k = newton(lambda k: multivariate_solow(k, A=A, s=s, α=α, δ=δ) - k, \
init,\
tol=1e-7)

iteration 1, error = 1.57459
iteration 2, error = 0.21345
iteration 3, error = 0.00205
iteration 4, error = 0.00000
iteration 5, error = 0.00000

Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 0 ns, sys: 3.73 ms, total: 3.73 ms
Wall time: 3.15 ms

We can see it steps towards a more accurate solution.

Exercise 10.5.2
In this exercise, let’s try different initial values and check how Newton’s method responds to different starting points.
Let’s define a three-good problem with the following default values:

𝐴 = ⎛⎜
⎝

0.2 0.1 0.7
0.3 0.2 0.5
0.1 0.8 0.1

⎞⎟
⎠

, 𝑏 = ⎛⎜
⎝

1
1
1
⎞⎟
⎠

and 𝑐 = ⎛⎜
⎝

1
1
1
⎞⎟
⎠

For this exercise, use the following extreme price vectors as initial values:

𝑝10 = (5, 5, 5)
𝑝20 = (1, 1, 1)
𝑝30 = (4.5, 0.1, 4)

Set the tolerance to 0.0 for more accurate output.

Solution to Exercise 10.5.2
Define parameters and initial values

A = np.array([
[0.2, 0.1, 0.7],
[0.3, 0.2, 0.5],
[0.1, 0.8, 0.1]

])

b = np.array([1.0, 1.0, 1.0])
c = np.array([1.0, 1.0, 1.0])

initLs = [np.repeat(5.0, 3),
np.ones(3),
np.array([4.5, 0.1, 4.0])]

Let’s run through each initial guess and check the output
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attempt = 1
for init in initLs:

print(f'Attempt {attempt}: Starting value is {init} \n')
%time p = newton(lambda p: e(p, A, b, c), \

init, \
tol=1e-15, \
max_iter=15)

print('-'*64)
attempt += 1

Attempt 1: Starting value is [5. 5. 5.]

iteration 1, error = 9.24381

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/autograd/
↪tracer.py:48: RuntimeWarning: invalid value encountered in sqrt
return f_raw(*args, **kwargs)

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/autograd/numpy/
↪numpy_vjps.py:99: RuntimeWarning: invalid value encountered in power
defvjp(anp.sqrt, lambda ans, x : lambda g: g * 0.5 * x**-0.5)

---------------------------------------------------------------------------
Exception Traceback (most recent call last)
File <timed exec>:1

Cell In[34], line 12, in newton(f, x_0, tol, max_iter)
10 y = q(x)
11 if(any(np.isnan(y))):

---> 12 raise Exception('Solution not found with NaN generated')
13 error = np.linalg.norm(x - y)
14 x = y

Exception: Solution not found with NaN generated

----------------------------------------------------------------
Attempt 2: Starting value is [1. 1. 1.]

iteration 1, error = 0.73419
iteration 2, error = 0.12472
iteration 3, error = 0.00269
iteration 4, error = 0.00000
iteration 5, error = 0.00000
iteration 6, error = 0.00000

Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 3.11 ms, sys: 0 ns, total: 3.11 ms
Wall time: 2.67 ms
----------------------------------------------------------------
Attempt 3: Starting value is [4.5 0.1 4. ]

iteration 1, error = 4.89202
iteration 2, error = 1.21206
iteration 3, error = 0.69421

(continues on next page)
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iteration 4, error = 0.16895
iteration 5, error = 0.00521
iteration 6, error = 0.00000
iteration 7, error = 0.00000
iteration 8, error = 0.00000

Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 3.61 ms, sys: 0 ns, total: 3.61 ms
Wall time: 3.17 ms
----------------------------------------------------------------

We can find that Newton’s method may fail for some starting values.
Sometimes it may take a few initial guesses to achieve convergence.
Substitute the result back to the formula to check our result

e(p, A, b, c)

array([ 0.00000000e+00, 0.00000000e+00, -2.22044605e-16])

We can see the result is very accurate.
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CHAPTER

ELEVEN

DISCRETE STATE DYNAMIC PROGRAMMING

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

11.1 Overview

In this lecture we discuss a family of dynamic programming problems with the following features:
1. a discrete state space and discrete choices (actions)
2. an infinite horizon
3. discounted rewards
4. Markov state transitions

We call such problems discrete dynamic programs or discrete DPs.
Discrete DPs are the workhorses in much of modern quantitative economics, including

• monetary economics
• search and labor economics
• household savings and consumption theory
• investment theory
• asset pricing
• industrial organization, etc.

When a given model is not inherently discrete, it is common to replace it with a discretized version in order to use discrete
DP techniques.
This lecture covers

• the theory of dynamic programming in a discrete setting, plus examples and applications
• a powerful set of routines for solving discrete DPs from the QuantEcon code library

Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
import quantecon as qe
import scipy.sparse as sparse

(continues on next page)
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from quantecon import compute_fixed_point
from quantecon.markov import DiscreteDP

11.1.1 How to Read this Lecture

We use dynamic programming many applied lectures, such as
• The shortest path lecture
• The McCall search model lecture

The objective of this lecture is to provide a more systematic and theoretical treatment, including algorithms and imple-
mentation while focusing on the discrete case.

11.1.2 Code

Among other things, it offers
• a flexible, well-designed interface
• multiple solution methods, including value function and policy function iteration
• high-speed operations via carefully optimized JIT-compiled functions
• the ability to scale to large problems by minimizing vectorized operators and allowing operations on sparse matrices

JIT compilation relies on Numba, which should work seamlessly if you are using Anaconda as suggested.

11.1.3 References

For background reading on dynamic programming and additional applications, see, for example,
• [Ljungqvist and Sargent, 2018]
• [Hernandez-Lerma and Lasserre, 1996], section 3.5
• [Puterman, 2005]
• [Stokey et al., 1989]
• [Rust, 1996]
• [Miranda and Fackler, 2002]
• EDTC, chapter 5

11.2 Discrete DPs

Loosely speaking, a discrete DP is a maximization problem with an objective function of the form

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑠𝑡, 𝑎𝑡) (11.1)

where
• 𝑠𝑡 is the state variable

192 Chapter 11. Discrete State Dynamic Programming

https://python-intro.quantecon.org/short_path.html
https://python-intro.quantecon.org/mccall_model.html
http://numba.pydata.org/
https://www.anaconda.com/download/
https://python-programming.quantecon.org/getting_started.html
http://johnstachurski.net/edtc.html


Tools and Techniques for Computational Economics

• 𝑎𝑡 is the action
• 𝛽 is a discount factor
• 𝑟(𝑠𝑡, 𝑎𝑡) is interpreted as a current reward when the state is 𝑠𝑡 and the action chosen is 𝑎𝑡

Each pair (𝑠𝑡, 𝑎𝑡) pins down transition probabilities 𝑄(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) for the next period state 𝑠𝑡+1.
Thus, actions influence not only current rewards but also the future time path of the state.
The essence of dynamic programming problems is to trade off current rewards vs favorable positioning of the future state
(modulo randomness).
Examples:

• consuming today vs saving and accumulating assets
• accepting a job offer today vs seeking a better one in the future
• exercising an option now vs waiting

11.2.1 Policies

The most fruitful way to think about solutions to discrete DP problems is to compare policies.
In general, a policy is a randomized map from past actions and states to current action.
In the setting formalized below, it suffices to consider so-called stationary Markov policies, which consider only the current
state.
In particular, a stationary Markov policy is a map 𝜎 from states to actions

• 𝑎𝑡 = 𝜎(𝑠𝑡) indicates that 𝑎𝑡 is the action to be taken in state 𝑠𝑡

It is known that, for any arbitrary policy, there exists a stationary Markov policy that dominates it at least weakly.
• See section 5.5 of [Puterman, 2005] for discussion and proofs.

In what follows, stationary Markov policies are referred to simply as policies.
The aim is to find an optimal policy, in the sense of one that maximizes (11.1).
Let’s now step through these ideas more carefully.

11.2.2 Formal Definition

Formally, a discrete dynamic program consists of the following components:
1. A finite set of states 𝑆 = {0, … , 𝑛 − 1}.
2. A finite set of feasible actions 𝐴(𝑠) for each state 𝑠 ∈ 𝑆, and a corresponding set of feasible state-action pairs.

SA ∶= {(𝑠, 𝑎) ∣ 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)}

3. A reward function 𝑟 ∶ SA → ℝ.
4. A transition probability function 𝑄∶ SA → Δ(𝑆), where Δ(𝑆) is the set of probability distributions over 𝑆.
5. A discount factor 𝛽 ∈ [0, 1).
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We also use the notation 𝐴 ∶= ⋃𝑠∈𝑆 𝐴(𝑠) = {0, … , 𝑚 − 1} and call this set the action space.
A policy is a function 𝜎 ∶ 𝑆 → 𝐴.
A policy is called feasible if it satisfies 𝜎(𝑠) ∈ 𝐴(𝑠) for all 𝑠 ∈ 𝑆.
Denote the set of all feasible policies by Σ.
If a decision-maker uses a policy 𝜎 ∈ Σ, then

• the current reward at time 𝑡 is 𝑟(𝑠𝑡, 𝜎(𝑠𝑡))
• the probability that 𝑠𝑡+1 = 𝑠′ is 𝑄(𝑠𝑡, 𝜎(𝑠𝑡), 𝑠′)

For each 𝜎 ∈ Σ, define
• 𝑟𝜎 by 𝑟𝜎(𝑠) ∶= 𝑟(𝑠, 𝜎(𝑠)))
• 𝑄𝜎 by 𝑄𝜎(𝑠, 𝑠′) ∶= 𝑄(𝑠, 𝜎(𝑠), 𝑠′)

Notice that 𝑄𝜎 is a stochastic matrix on 𝑆.
It gives transition probabilities of the controlled chain when we follow policy 𝜎.
If we think of 𝑟𝜎 as a column vector, then so is 𝑄𝑡

𝜎𝑟𝜎, and the 𝑠-th row of the latter has the interpretation

(𝑄𝑡
𝜎𝑟𝜎)(𝑠) = 𝔼[𝑟(𝑠𝑡, 𝜎(𝑠𝑡)) ∣ 𝑠0 = 𝑠] when {𝑠𝑡} ∼ 𝑄𝜎 (11.2)

Comments
• {𝑠𝑡} ∼ 𝑄𝜎 means that the state is generated by stochastic matrix 𝑄𝜎.
• See this discussion on computing expectations of Markov chains for an explanation of the expression in (11.2).

Notice that we’re not really distinguishing between functions from 𝑆 to ℝ and vectors in ℝ𝑛.
This is natural because they are in one to one correspondence.

11.2.3 Value and Optimality

Let 𝑣𝜎(𝑠) denote the discounted sum of expected reward flows from policy 𝜎 when the initial state is 𝑠.
To calculate this quantity we pass the expectation through the sum in (11.1) and use (11.2) to get

𝑣𝜎(𝑠) =
∞

∑
𝑡=0

𝛽𝑡(𝑄𝑡
𝜎𝑟𝜎)(𝑠) (𝑠 ∈ 𝑆)

This function is called the policy value function for the policy 𝜎.
The optimal value function, or simply value function, is the function 𝑣∗ ∶ 𝑆 → ℝ defined by

𝑣∗(𝑠) = max
𝜎∈Σ

𝑣𝜎(𝑠) (𝑠 ∈ 𝑆)

(We can use max rather than sup here because the domain is a finite set)
A policy 𝜎 ∈ Σ is called optimal if 𝑣𝜎(𝑠) = 𝑣∗(𝑠) for all 𝑠 ∈ 𝑆.
Given any 𝑤∶ 𝑆 → ℝ, a policy 𝜎 ∈ Σ is called 𝑤-greedy if

𝜎(𝑠) ∈ argmax
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑤(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

As discussed in detail below, optimal policies are precisely those that are 𝑣∗-greedy.
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11.2.4 Two Operators

It is useful to define the following operators:
• The Bellman operator 𝑇 ∶ ℝ𝑆 → ℝ𝑆 is defined by

(𝑇 𝑣)(𝑠) = max
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑣(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

• For any policy function 𝜎 ∈ Σ, the operator 𝑇𝜎 ∶ ℝ𝑆 → ℝ𝑆 is defined by

(𝑇𝜎𝑣)(𝑠) = 𝑟(𝑠, 𝜎(𝑠)) + 𝛽 ∑
𝑠′∈𝑆

𝑣(𝑠′)𝑄(𝑠, 𝜎(𝑠), 𝑠′) (𝑠 ∈ 𝑆)

This can be written more succinctly in operator notation as

𝑇𝜎𝑣 = 𝑟𝜎 + 𝛽𝑄𝜎𝑣
The two operators are both monotone

• 𝑣 ≤ 𝑤 implies 𝑇 𝑣 ≤ 𝑇 𝑤 pointwise on 𝑆, and similarly for 𝑇𝜎

They are also contraction mappings with modulus 𝛽
• ‖𝑇 𝑣 − 𝑇 𝑤‖ ≤ 𝛽‖𝑣 − 𝑤‖ and similarly for 𝑇𝜎, where ‖⋅‖ is the max norm

For any policy 𝜎, its value 𝑣𝜎 is the unique fixed point of 𝑇𝜎.
For proofs of these results and those in the next section, see, for example, EDTC, chapter 10.

11.2.5 The Bellman Equation and the Principle of Optimality

The main principle of the theory of dynamic programming is that
• the optimal value function 𝑣∗ is a unique solution to the Bellman equation

𝑣(𝑠) = max
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑣(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

or in other words, 𝑣∗ is the unique fixed point of 𝑇 , and
• 𝜎∗ is an optimal policy function if and only if it is 𝑣∗-greedy

By the definition of greedy policies given above, this means that

𝜎∗(𝑠) ∈ argmax
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑣∗(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

11.3 Solving Discrete DPs

Now that the theory has been set out, let’s turn to solution methods.
The code for solving discrete DPs is available in ddp.py from the QuantEcon.py code library.
It implements the three most important solution methods for discrete dynamic programs, namely

• value function iteration
• policy function iteration
• modified policy function iteration

Let’s briefly review these algorithms and their implementation.
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11.3.1 Value Function Iteration

Perhaps the most familiar method for solving all manner of dynamic programs is value function iteration.
This algorithm uses the fact that the Bellman operator 𝑇 is a contraction mapping with fixed point 𝑣∗.
Hence, iterative application of 𝑇 to any initial function 𝑣0 ∶ 𝑆 → ℝ converges to 𝑣∗.
The details of the algorithm can be found in the appendix.

11.3.2 Policy Function Iteration

This routine, also known as Howard’s policy improvement algorithm, exploits more closely the particular structure of a
discrete DP problem.
Each iteration consists of

1. A policy evaluation step that computes the value 𝑣𝜎 of a policy 𝜎 by solving the linear equation 𝑣 = 𝑇𝜎𝑣.
2. A policy improvement step that computes a 𝑣𝜎-greedy policy.

In the current setting, policy iteration computes an exact optimal policy in finitely many iterations.
• See theorem 10.2.6 of EDTC for a proof.

The details of the algorithm can be found in the appendix.

11.3.3 Modified Policy Function Iteration

Modified policy iteration replaces the policy evaluation step in policy iteration with “partial policy evaluation”.
The latter computes an approximation to the value of a policy 𝜎 by iterating 𝑇𝜎 for a specified number of times.
This approach can be useful when the state space is very large and the linear system in the policy evaluation step of policy
iteration is correspondingly difficult to solve.
The details of the algorithm can be found in the appendix.

11.4 Example: A Growth Model

Let’s consider a simple consumption-saving model.
A single household either consumes or stores its own output of a single consumption good.
The household starts each period with current stock 𝑠.
Next, the household chooses a quantity 𝑎 to store and consumes 𝑐 = 𝑠 − 𝑎

• Storage is limited by a global upper bound 𝑀 .
• Flow utility is 𝑢(𝑐) = 𝑐𝛼.

Output is drawn from a discrete uniform distribution on {0, … , 𝐵}.
The next period stock is therefore

𝑠′ = 𝑎 + 𝑈 where 𝑈 ∼ 𝑈[0, … , 𝐵]

The discount factor is 𝛽 ∈ [0, 1).
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11.4.1 Discrete DP Representation

We want to represent this model in the format of a discrete dynamic program.
To this end, we take

• the state variable to be the stock 𝑠
• the state space to be 𝑆 = {0, … , 𝑀 + 𝐵}

– hence 𝑛 = 𝑀 + 𝐵 + 1
• the action to be the storage quantity 𝑎
• the set of feasible actions at 𝑠 to be 𝐴(𝑠) = {0, … ,min{𝑠, 𝑀}}

– hence 𝐴 = {0, … , 𝑀} and 𝑚 = 𝑀 + 1
• the reward function to be 𝑟(𝑠, 𝑎) = 𝑢(𝑠 − 𝑎)
• the transition probabilities to be

𝑄(𝑠, 𝑎, 𝑠′) ∶= {
1

𝐵+1 if 𝑎 ≤ 𝑠′ ≤ 𝑎 + 𝐵
0 otherwise

(11.3)

11.4.2 Defining a DiscreteDP Instance

This information will be used to create an instance of DiscreteDP by passing the following information
1. An 𝑛 × 𝑚 reward array 𝑅.
2. An 𝑛 × 𝑚 × 𝑛 transition probability array 𝑄.
3. A discount factor 𝛽.

For 𝑅 we set 𝑅[𝑠, 𝑎] = 𝑢(𝑠 − 𝑎) if 𝑎 ≤ 𝑠 and −∞ otherwise.
For 𝑄 we follow the rule in (11.3).

Note:
• The feasibility constraint is embedded into 𝑅 by setting 𝑅[𝑠, 𝑎] = −∞ for 𝑎 ∉ 𝐴(𝑠).
• Probability distributions for (𝑠, 𝑎) with 𝑎 ∉ 𝐴(𝑠) can be arbitrary.

The following code sets up these objects for us

class SimpleOG:

def __init__(self, B=10, M=5, α=0.5, β=0.9):
"""
Set up R, Q and β, the three elements that define an instance of
the DiscreteDP class.
"""

self.B, self.M, self.α, self.β = B, M, α, β
self.n = B + M + 1
self.m = M + 1

self.R = np.empty((self.n, self.m))

(continues on next page)
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(continued from previous page)

self.Q = np.zeros((self.n, self.m, self.n))

self.populate_Q()
self.populate_R()

def u(self, c):
return c**self.α

def populate_R(self):
"""
Populate the R matrix, with R[s, a] = -np.inf for infeasible
state-action pairs.
"""
for s in range(self.n):

for a in range(self.m):
self.R[s, a] = self.u(s - a) if a <= s else -np.inf

def populate_Q(self):
"""
Populate the Q matrix by setting

Q[s, a, s'] = 1 / (1 + B) if a <= s' <= a + B

and zero otherwise.
"""

for a in range(self.m):
self.Q[:, a, a:(a + self.B + 1)] = 1.0 / (self.B + 1)

Let’s run this code and create an instance of SimpleOG.

g = SimpleOG() # Use default parameters

Instances of DiscreteDP are created using the signature DiscreteDP(R, Q, β).
Let’s create an instance using the objects stored in g

ddp = qe.markov.DiscreteDP(g.R, g.Q, g.β)

Now that we have an instance ddp of DiscreteDP we can solve it as follows

results = ddp.solve(method='policy_iteration')

Let’s see what we’ve got here

dir(results)

['max_iter', 'mc', 'method', 'num_iter', 'sigma', 'v']

(In IPython version 4.0 and above you can also type results. and hit the tab key)
The most important attributes are v, the value function, and σ, the optimal policy

results.v
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array([19.01740222, 20.01740222, 20.43161578, 20.74945302, 21.04078099,
21.30873018, 21.54479816, 21.76928181, 21.98270358, 22.18824323,
22.3845048 , 22.57807736, 22.76109127, 22.94376708, 23.11533996,
23.27761762])

results.sigma

array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5])

Since we’ve used policy iteration, these results will be exact unless we hit the iteration bound max_iter.
Let’s make sure this didn’t happen

results.max_iter

250

results.num_iter

3

Another interesting object is results.mc, which is the controlled chain defined by𝑄𝜎∗ , where 𝜎∗ is the optimal policy.
In other words, it gives the dynamics of the state when the agent follows the optimal policy.
Since this object is an instance of MarkovChain from QuantEcon.py (see this lecture for more discussion), we can easily
simulate it, compute its stationary distribution and so on.

results.mc.stationary_distributions

array([[0.01732187, 0.04121063, 0.05773956, 0.07426848, 0.08095823,
0.09090909, 0.09090909, 0.09090909, 0.09090909, 0.09090909,
0.09090909, 0.07358722, 0.04969846, 0.03316953, 0.01664061,
0.00995086]])

Here’s the same information in a bar graph
What happens if the agent is more patient?

ddp = qe.markov.DiscreteDP(g.R, g.Q, 0.99) # Increase β to 0.99
results = ddp.solve(method='policy_iteration')
results.mc.stationary_distributions

array([[0.00546913, 0.02321342, 0.03147788, 0.04800681, 0.05627127,
0.09090909, 0.09090909, 0.09090909, 0.09090909, 0.09090909,
0.09090909, 0.08543996, 0.06769567, 0.05943121, 0.04290228,
0.03463782]])

If we look at the bar graph we can see the rightward shift in probability mass
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11.4.3 State-Action Pair Formulation

The DiscreteDP class in fact, provides a second interface to set up an instance.
One of the advantages of this alternative set up is that it permits the use of a sparse matrix for Q.
(An example of using sparse matrices is given in the exercises below)
The call signature of the second formulation is DiscreteDP(R, Q, β, s_indices, a_indices) where

• s_indices and a_indices are arrays of equal length L enumerating all feasible state-action pairs
• R is an array of length L giving corresponding rewards
• Q is an L x n transition probability array

Here’s how we could set up these objects for the preceding example

B, M, α, β = 10, 5, 0.5, 0.9
n = B + M + 1
m = M + 1

def u(c):
return c**α

s_indices = []
a_indices = []
Q = []
R = []
b = 1.0 / (B + 1)

for s in range(n):
for a in range(min(M, s) + 1): # All feasible a at this s

s_indices.append(s)
a_indices.append(a)
q = np.zeros(n)
q[a:(a + B + 1)] = b # b on these values, otherwise 0
Q.append(q)
R.append(u(s - a))

ddp = qe.markov.DiscreteDP(R, Q, β, s_indices, a_indices)

For larger problems, you might need to write this code more efficiently by vectorizing or using Numba.

11.5 Exercises

In the stochastic optimal growth lecture from our introductory lecture series, we solve a benchmark model that has an
analytical solution.
The exercise is to replicate this solution using DiscreteDP.
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11.6 Solutions

11.6.1 Setup

Details of the model can be found in the lecture on optimal growth.
We let 𝑓(𝑘) = 𝑘𝛼 with 𝛼 = 0.65, 𝑢(𝑐) = log 𝑐, and 𝛽 = 0.95

α = 0.65
f = lambda k: k**α
u = np.log
β = 0.95

Here we want to solve a finite state version of the continuous state model above.
We discretize the state space into a grid of size grid_size=500, from 10−6 to grid_max=2

grid_max = 2
grid_size = 500
grid = np.linspace(1e-6, grid_max, grid_size)

We choose the action to be the amount of capital to save for the next period (the state is the capital stock at the beginning
of the period).
Thus the state indices and the action indices are both 0, …, grid_size-1.
Action (indexed by) a is feasible at state (indexed by) s if and only if grid[a] < f([grid[s]) (zero consumption
is not allowed because of the log utility).
Thus the Bellman equation is:

𝑣(𝑘) = max
0<𝑘′<𝑓(𝑘)

𝑢(𝑓(𝑘) − 𝑘′) + 𝛽𝑣(𝑘′),

where 𝑘′ is the capital stock in the next period.
The transition probability array Q will be highly sparse (in fact it is degenerate as the model is deterministic), so we
formulate the problem with state-action pairs, to represent Q in scipy sparse matrix format.
We first construct indices for state-action pairs:

# Consumption matrix, with nonpositive consumption included
C = f(grid).reshape(grid_size, 1) - grid.reshape(1, grid_size)

# State-action indices
s_indices, a_indices = np.where(C > 0)

# Number of state-action pairs
L = len(s_indices)

print(L)
print(s_indices)
print(a_indices)

118841
[ 0 1 1 ... 499 499 499]
[ 0 0 1 ... 389 390 391]
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Reward vector R (of length L):

R = u(C[s_indices, a_indices])

(Degenerate) transition probability matrix Q (of shape (L, grid_size)), where we choose the scipy.sparse.lil_matrix
format, while any format will do (internally it will be converted to the csr format):

Q = sparse.lil_matrix((L, grid_size))
Q[np.arange(L), a_indices] = 1

(If you are familiar with the data structure of scipy.sparse.csr_matrix, the following is the most efficient way to create the
Q matrix in the current case)

# data = np.ones(L)
# indptr = np.arange(L+1)
# Q = sparse.csr_matrix((data, a_indices, indptr), shape=(L, grid_size))

Discrete growth model:

ddp = DiscreteDP(R, Q, β, s_indices, a_indices)

Notes
Here we intensively vectorized the operations on arrays to simplify the code.
As noted, however, vectorization is memory consumptive, and it can be prohibitively so for grids with large size.

11.6.2 Solving the Model

Solve the dynamic optimization problem:

res = ddp.solve(method='policy_iteration')
v, σ, num_iter = res.v, res.sigma, res.num_iter
num_iter

10

Note that sigma contains the indices of the optimal capital stocks to save for the next period. The following translates
sigma to the corresponding consumption vector.

# Optimal consumption in the discrete version
c = f(grid) - grid[σ]

# Exact solution of the continuous version
ab = α * β
c1 = (np.log(1 - ab) + np.log(ab) * ab / (1 - ab)) / (1 - β)
c2 = α / (1 - ab)

def v_star(k):
return c1 + c2 * np.log(k)

def c_star(k):
return (1 - ab) * k**α

Let us compare the solution of the discrete model with that of the original continuous model
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fig, ax = plt.subplots(1, 2, figsize=(14, 4))
ax[0].set_ylim(-40, -32)
ax[0].set_xlim(grid[0], grid[-1])
ax[1].set_xlim(grid[0], grid[-1])

lb0 = 'discrete value function'
ax[0].plot(grid, v, lw=2, alpha=0.6, label=lb0)

lb0 = 'continuous value function'
ax[0].plot(grid, v_star(grid), 'k-', lw=1.5, alpha=0.8, label=lb0)
ax[0].legend(loc='upper left')

lb1 = 'discrete optimal consumption'
ax[1].plot(grid, c, 'b-', lw=2, alpha=0.6, label=lb1)

lb1 = 'continuous optimal consumption'
ax[1].plot(grid, c_star(grid), 'k-', lw=1.5, alpha=0.8, label=lb1)
ax[1].legend(loc='upper left')
plt.show()

The outcomes appear very close to those of the continuous version.
Except for the “boundary” point, the value functions are very close:

np.abs(v - v_star(grid)).max()

121.49819147053378

np.abs(v - v_star(grid))[1:].max()

0.012681735127500815

The optimal consumption functions are close as well:

np.abs(c - c_star(grid)).max()

0.003826523100010082

In fact, the optimal consumption obtained in the discrete version is not really monotone, but the decrements are quite
small:
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diff = np.diff(c)
(diff >= 0).all()

False

dec_ind = np.where(diff < 0)[0]
len(dec_ind)

174

np.abs(diff[dec_ind]).max()

0.001961853339766839

The value function is monotone:

(np.diff(v) > 0).all()

True

11.6.3 Comparison of the Solution Methods

Let us solve the problem with the other two methods.

Value Iteration

ddp.epsilon = 1e-4
ddp.max_iter = 500
res1 = ddp.solve(method='value_iteration')
res1.num_iter

294

np.array_equal(σ, res1.sigma)

True
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Modified Policy Iteration

res2 = ddp.solve(method='modified_policy_iteration')
res2.num_iter

16

np.array_equal(σ, res2.sigma)

True

Speed Comparison

%timeit ddp.solve(method='value_iteration')
%timeit ddp.solve(method='policy_iteration')
%timeit ddp.solve(method='modified_policy_iteration')

92.1 ms ± 138 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

9.27 ms ± 25.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

10.8 ms ± 123 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

As is often the case, policy iteration and modified policy iteration are much faster than value iteration.

11.6.4 Replication of the Figures

Using DiscreteDP we replicate the figures shown in the lecture.

Convergence of Value Iteration

Let us first visualize the convergence of the value iteration algorithm as in the lecture, where we use ddp.
bellman_operator implemented as a method of DiscreteDP

w = 5 * np.log(grid) - 25 # Initial condition
n = 35
fig, ax = plt.subplots(figsize=(8,5))
ax.set_ylim(-40, -20)
ax.set_xlim(np.min(grid), np.max(grid))
lb = 'initial condition'
ax.plot(grid, w, color=plt.cm.jet(0), lw=2, alpha=0.6, label=lb)
for i in range(n):

w = ddp.bellman_operator(w)
ax.plot(grid, w, color=plt.cm.jet(i / n), lw=2, alpha=0.6)

lb = 'true value function'
ax.plot(grid, v_star(grid), 'k-', lw=2, alpha=0.8, label=lb)
ax.legend(loc='upper left')

(continues on next page)
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(continued from previous page)

plt.show()

We next plot the consumption policies along with the value iteration

w = 5 * u(grid) - 25 # Initial condition

fig, ax = plt.subplots(3, 1, figsize=(8, 10))
true_c = c_star(grid)

for i, n in enumerate((2, 4, 6)):
ax[i].set_ylim(0, 1)
ax[i].set_xlim(0, 2)
ax[i].set_yticks((0, 1))
ax[i].set_xticks((0, 2))

w = 5 * u(grid) - 25 # Initial condition
compute_fixed_point(ddp.bellman_operator, w, max_iter=n, print_skip=1)
σ = ddp.compute_greedy(w) # Policy indices
c_policy = f(grid) - grid[σ]

ax[i].plot(grid, c_policy, 'b-', lw=2, alpha=0.8,
label='approximate optimal consumption policy')

ax[i].plot(grid, true_c, 'k-', lw=2, alpha=0.8,
label='true optimal consumption policy')

ax[i].legend(loc='upper left')
ax[i].set_title(f'{n} value function iterations')

plt.show()
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Iteration Distance Elapsed (seconds)
---------------------------------------------
1 5.518e+00 5.000e-04
2 4.070e+00 8.597e-04
Iteration Distance Elapsed (seconds)
---------------------------------------------
1 5.518e+00 3.660e-04
2 4.070e+00 7.148e-04
3 3.866e+00 1.073e-03
4 3.673e+00 1.412e-03
Iteration Distance Elapsed (seconds)
---------------------------------------------
1 5.518e+00 3.633e-04
2 4.070e+00 7.191e-04
3 3.866e+00 1.063e-03
4 3.673e+00 1.401e-03
5 3.489e+00 1.739e-03
6 3.315e+00 2.074e-03

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/quantecon/_
↪compute_fp.py:152: RuntimeWarning: max_iter attained before convergence in␣
↪compute_fixed_point
warnings.warn(_non_convergence_msg, RuntimeWarning)
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Dynamics of the Capital Stock

Finally, let us work on Exercise 2, where we plot the trajectories of the capital stock for three different discount factors,
0.9, 0.94, and 0.98, with initial condition 𝑘0 = 0.1.

discount_factors = (0.9, 0.94, 0.98)
k_init = 0.1

# Search for the index corresponding to k_init
k_init_ind = np.searchsorted(grid, k_init)

sample_size = 25

fig, ax = plt.subplots(figsize=(8,5))
ax.set_xlabel("time")
ax.set_ylabel("capital")
ax.set_ylim(0.10, 0.30)

# Create a new instance, not to modify the one used above
ddp0 = DiscreteDP(R, Q, β, s_indices, a_indices)

for beta in discount_factors:
ddp0.beta = beta
res0 = ddp0.solve()
k_path_ind = res0.mc.simulate(init=k_init_ind, ts_length=sample_size)
k_path = grid[k_path_ind]
ax.plot(k_path, 'o-', lw=2, alpha=0.75, label=f'$\\beta = {beta}$')

ax.legend(loc='lower right')
plt.show()
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11.7 Appendix: Algorithms

This appendix covers the details of the solution algorithms implemented for DiscreteDP.
We will make use of the following notions of approximate optimality:

• For 𝜀 > 0, 𝑣 is called an 𝜀-approximation of 𝑣∗ if ‖𝑣 − 𝑣∗‖ < 𝜀.
• A policy 𝜎 ∈ Σ is called 𝜀-optimal if 𝑣𝜎 is an 𝜀-approximation of 𝑣∗.

11.7.1 Value Iteration

The DiscreteDP value iteration method implements value function iteration as follows
1. Choose any 𝑣0 ∈ ℝ𝑛, and specify 𝜀 > 0; set 𝑖 = 0.
2. Compute 𝑣𝑖+1 = 𝑇 𝑣𝑖.
3. If ‖𝑣𝑖+1 − 𝑣𝑖‖ < [(1 − 𝛽)/(2𝛽)]𝜀, then go to step 4; otherwise, set 𝑖 = 𝑖 + 1 and go to step 2.
4. Compute a 𝑣𝑖+1-greedy policy 𝜎, and return 𝑣𝑖+1 and 𝜎.

Given 𝜀 > 0, the value iteration algorithm
• terminates in a finite number of iterations
• returns an 𝜀/2-approximation of the optimal value function and an 𝜀-optimal policy function (unless iter_max
is reached)

(While not explicit, in the actual implementation each algorithm is terminated if the number of iterations reaches
iter_max)

11.7.2 Policy Iteration

The DiscreteDP policy iteration method runs as follows
1. Choose any 𝑣0 ∈ ℝ𝑛 and compute a 𝑣0-greedy policy 𝜎0; set 𝑖 = 0.
2. Compute the value 𝑣𝜎𝑖 by solving the equation 𝑣 = 𝑇𝜎𝑖𝑣.
3. Compute a 𝑣𝜎𝑖 -greedy policy 𝜎𝑖+1; let 𝜎𝑖+1 = 𝜎𝑖 if possible.
4. If 𝜎𝑖+1 = 𝜎𝑖, then return 𝑣𝜎𝑖 and 𝜎𝑖+1; otherwise, set 𝑖 = 𝑖 + 1 and go to step 2.

The policy iteration algorithm terminates in a finite number of iterations.
It returns an optimal value function and an optimal policy function (unless iter_max is reached).

11.7.3 Modified Policy Iteration

The DiscreteDP modified policy iteration method runs as follows:
1. Choose any 𝑣0 ∈ ℝ𝑛, and specify 𝜀 > 0 and 𝑘 ≥ 0; set 𝑖 = 0.
2. Compute a 𝑣𝑖-greedy policy 𝜎𝑖+1; let 𝜎𝑖+1 = 𝜎𝑖 if possible (for 𝑖 ≥ 1).
3. Compute 𝑢 = 𝑇 𝑣𝑖 (= 𝑇𝜎𝑖+1𝑣𝑖). If span(𝑢 − 𝑣𝑖) < [(1 − 𝛽)/𝛽]𝜀, then go to step 5; otherwise go to step 4.

• Span is defined by span(𝑧) = max(𝑧) − min(𝑧).
4. Compute 𝑣𝑖+1 = (𝑇𝜎𝑖+1)𝑘𝑢 (= (𝑇𝜎𝑖+1)𝑘+1𝑣𝑖); set 𝑖 = 𝑖 + 1 and go to step 2.
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5. Return 𝑣 = 𝑢 + [𝛽/(1 − 𝛽)][(min(𝑢 − 𝑣𝑖) + max(𝑢 − 𝑣𝑖))/2]1 and 𝜎𝑖+1.
Given 𝜀 > 0, provided that 𝑣0 is such that 𝑇 𝑣0 ≥ 𝑣0, the modified policy iteration algorithm terminates in a finite number
of iterations.
It returns an 𝜀/2-approximation of the optimal value function and an 𝜀-optimal policy function (unless iter_max is
reached).
See also the documentation for DiscreteDP.
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CHAPTER

TWELVE

VARS AND DMDS

This lecture applies computational methods that we learned about in this lecture Singular Value Decomposition to
• first-order vector autoregressions (VARs)
• dynamic mode decompositions (DMDs)
• connections between DMDs and first-order VARs

12.1 First-Order Vector Autoregressions

We want to fit a first-order vector autoregression

𝑋𝑡+1 = 𝐴𝑋𝑡 + 𝐶𝜖𝑡+1, 𝜖𝑡+1 ⟂ 𝑋𝑡 (12.1)

where 𝜖𝑡+1 is the time 𝑡 + 1 component of a sequence of i.i.d. 𝑚 × 1 random vectors with mean vector zero and identity
covariance matrix and where the 𝑚 × 1 vector 𝑋𝑡 is

𝑋𝑡 = [𝑋1,𝑡 𝑋2,𝑡 ⋯ 𝑋𝑚,𝑡]
⊤ (12.2)

and where ⋅⊤ again denotes complex transposition and 𝑋𝑖,𝑡 is variable 𝑖 at time 𝑡.
We want to fit equation (12.1).
Our data are organized in an 𝑚 × (𝑛 + 1) matrix �̃�

�̃� = [𝑋1 ∣ 𝑋2 ∣ ⋯ ∣ 𝑋𝑛 ∣ 𝑋𝑛+1]

where for 𝑡 = 1, … , 𝑛 + 1, the 𝑚 × 1 vector 𝑋𝑡 is given by (12.2).
Thus, we want to estimate a system (12.1) that consists of 𝑚 least squares regressions of everything on one lagged value
of everything.
The 𝑖’th equation of (12.1) is a regression of 𝑋𝑖,𝑡+1 on the vector 𝑋𝑡.
We proceed as follows.
From �̃�, we form two 𝑚 × 𝑛 matrices

𝑋 = [𝑋1 ∣ 𝑋2 ∣ ⋯ ∣ 𝑋𝑛]

and

𝑋′ = [𝑋2 ∣ 𝑋3 ∣ ⋯ ∣ 𝑋𝑛+1]

Here ′ is part of the name of the matrix 𝑋′ and does not indicate matrix transposition.
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We use ⋅⊤ to denote matrix transposition or its extension to complex matrices.
In forming 𝑋 and 𝑋′, we have in each case dropped a column from �̃�, the last column in the case of 𝑋, and the first
column in the case of 𝑋′.
Evidently, 𝑋 and 𝑋′ are both 𝑚 × 𝑛 matrices.
We denote the rank of 𝑋 as 𝑝 ≤ min(𝑚, 𝑛).
Two cases that interest us are

• 𝑛 >> 𝑚, so that we have many more time series observations 𝑛 than variables 𝑚
• 𝑚 >> 𝑛, so that we have many more variables 𝑚 than time series observations 𝑛

At a general level that includes both of these special cases, a common formula describes the least squares estimator ̂𝐴 of
𝐴.
But important details differ.
The common formula is

̂𝐴 = 𝑋′𝑋+ (12.3)

where 𝑋+ is the pseudo-inverse of 𝑋.
To read about theMoore-Penrose pseudo-inverse please see Moore-Penrose pseudo-inverse
Applicable formulas for the pseudo-inverse differ for our two cases.
Short-Fat Case:
When 𝑛 >> 𝑚, so that we have many more time series observations 𝑛 than variables 𝑚 and when 𝑋 has linearly
independent rows, 𝑋𝑋⊤ has an inverse and the pseudo-inverse 𝑋+ is

𝑋+ = 𝑋⊤(𝑋𝑋⊤)−1

Here 𝑋+ is a right-inverse that verifies 𝑋𝑋+ = 𝐼𝑚×𝑚.
In this case, our formula (12.3) for the least-squares estimator of the population matrix of regression coefficients 𝐴
becomes

̂𝐴 = 𝑋′𝑋⊤(𝑋𝑋⊤)−1 (12.4)

This formula for least-squares regression coefficients is widely used in econometrics.
It is used to estimate vector autorgressions.
The right side of formula (12.4) is proportional to the empirical cross second moment matrix of 𝑋𝑡+1 and 𝑋𝑡 times the
inverse of the second moment matrix of 𝑋𝑡.
Tall-Skinny Case:
When 𝑚 >> 𝑛, so that we have many more attributes 𝑚 than time series observations 𝑛 and when 𝑋 has linearly
independent columns, 𝑋⊤𝑋 has an inverse and the pseudo-inverse 𝑋+ is

𝑋+ = (𝑋⊤𝑋)−1𝑋⊤

Here 𝑋+ is a left-inverse that verifies 𝑋+𝑋 = 𝐼𝑛×𝑛.
In this case, our formula (12.3) for a least-squares estimator of 𝐴 becomes

̂𝐴 = 𝑋′(𝑋⊤𝑋)−1𝑋⊤ (12.5)

Please compare formulas (12.4) and (12.5) for ̂𝐴.
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Here we are especially interested in formula (12.5).

The 𝑖th row of ̂𝐴 is an 𝑚 × 1 vector of regression coefficients of 𝑋𝑖,𝑡+1 on 𝑋𝑗,𝑡, 𝑗 = 1, … , 𝑚.

If we use formula (12.5) to calculate ̂𝐴𝑋 we find that

̂𝐴𝑋 = 𝑋′

so that the regression equation fits perfectly.
This is a typical outcome in an underdetermined least-squares model.
To reiterate, in the tall-skinny case (described in Singular Value Decomposition) in which we have a number 𝑛 of obser-
vations that is small relative to the number 𝑚 of attributes that appear in the vector 𝑋𝑡, we want to fit equation (12.1).
We confront the facts that the least squares estimator is underdetermined and that the regression equation fits perfectly.
To proceed, we’ll want efficiently to calculate the pseudo-inverse 𝑋+.
The pseudo-inverse 𝑋+ will be a component of our estimator of 𝐴.
As our estimator ̂𝐴 of 𝐴 we want to form an 𝑚 × 𝑚 matrix that solves the least-squares best-fit problem

̂𝐴 = argmin ̌𝐴||𝑋′ − ̌𝐴𝑋||𝐹 (12.6)

where || ⋅ ||𝐹 denotes the Frobenius (or Euclidean) norm of a matrix.
The Frobenius norm is defined as

||𝐴||𝐹 =
√√√
⎷

𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

|𝐴𝑖𝑗|2

The minimizer of the right side of equation (12.6) is

̂𝐴 = 𝑋′𝑋+ (12.7)

where the (possibly huge) 𝑛 × 𝑚 matrix 𝑋+ = (𝑋⊤𝑋)−1𝑋⊤ is again a pseudo-inverse of 𝑋.
For some situations that we are interested in, 𝑋⊤𝑋 can be close to singular, a situation that makes some numerical
algorithms be inaccurate.

To acknowledge that possibility, we’ll use efficient algorithms to constructing a reduced-rank approximation of ̂𝐴 in
formula (12.5).
Such an approximation to our vector autoregression will no longer fit perfectly.

The 𝑖th row of ̂𝐴 is an 𝑚 × 1 vector of regression coefficients of 𝑋𝑖,𝑡+1 on 𝑋𝑗,𝑡, 𝑗 = 1, … , 𝑚.
An efficient way to compute the pseudo-inverse 𝑋+ is to start with a singular value decomposition

𝑋 = 𝑈Σ𝑉 ⊤ (12.8)

where we remind ourselves that for a reduced SVD, 𝑋 is an 𝑚 × 𝑛 matrix of data, 𝑈 is an 𝑚 × 𝑝 matrix, Σ is a 𝑝 × 𝑝
matrix, and 𝑉 is an 𝑛 × 𝑝 matrix.
We can efficiently construct the pertinent pseudo-inverse 𝑋+ by recognizing the following string of equalities.

𝑋+ = (𝑋⊤𝑋)−1𝑋⊤

= (𝑉 Σ𝑈⊤𝑈Σ𝑉 ⊤)−1𝑉 Σ𝑈⊤

= (𝑉 ΣΣ𝑉 ⊤)−1𝑉 Σ𝑈⊤

= 𝑉 Σ−1Σ−1𝑉 ⊤𝑉 Σ𝑈⊤

= 𝑉 Σ−1𝑈⊤

(12.9)
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(Since we are in the𝑚 >> 𝑛 case in which 𝑉 ⊤𝑉 = 𝐼𝑝×𝑝 in a reduced SVD, we can use the preceding string of equalities
for a reduced SVD as well as for a full SVD.)
Thus, we shall construct a pseudo-inverse 𝑋+ of 𝑋 by using a singular value decomposition of 𝑋 in equation (12.8) to
compute

𝑋+ = 𝑉 Σ−1𝑈⊤ (12.10)

where the matrix Σ−1 is constructed by replacing each non-zero element of Σ with 𝜎−1
𝑗 .

We can use formula (12.10) together with formula (12.7) to compute the matrix ̂𝐴 of regression coefficients.

Thus, our estimator ̂𝐴 = 𝑋′𝑋+ of the 𝑚 × 𝑚 matrix of coefficients 𝐴 is

̂𝐴 = 𝑋′𝑉 Σ−1𝑈⊤ (12.11)

12.2 Dynamic Mode Decomposition (DMD)

We turn to the 𝑚 >> 𝑛 tall and skinny case associated with Dynamic Mode Decomposition.
Here an 𝑚 × 𝑛 + 1 data matrix �̃� contains many more attributes (or variables) 𝑚 than time periods 𝑛 + 1.
Dynamic mode decomposition was introduced by [Schmid, 2010],
You can read about Dynamic Mode Decomposition here [Kutz et al., 2016] and here [Brunton and Kutz, 2019] (section
7.2).
DynamicModeDecomposition (DMD) computes a rank 𝑟 < 𝑝 approximation to the least squares regression coefficients

̂𝐴 described by formula (12.11).
We’ll build up gradually to a formulation that is useful in applications.
We’ll do this by describing three alternative representations of our first-order linear dynamic system, i.e., our vector
autoregression.
Guide to three representations: In practice, we’ll mainly be interested in Representation 3.
We use the first two representations to present some useful intermediate steps that help us to appreciate what is under the
hood of Representation 3.
In applications, we’ll use only a small subset of DMD modes to approximate dynamics.
We use such a small subset of DMD modes to construct a reduced-rank approximation to 𝐴.
To do that, we’ll want to use the reduced SVD’s affiliated with representation 3, not the full SVD’s affiliated with repre-
sentations 1 and 2.
Guide to impatient reader: In our applications, we’ll be using Representation 3.
You might want to skip the stage-setting representations 1 and 2 on first reading.
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12.3 Representation 1

In this representation, we shall use a full SVD of 𝑋.

We use the 𝑚 columns of 𝑈 , and thus the 𝑚 rows of 𝑈⊤, to define a 𝑚 × 1 vector ̃𝑏𝑡 as

̃𝑏𝑡 = 𝑈⊤𝑋𝑡. (12.12)

The original data 𝑋𝑡 can be represented as

𝑋𝑡 = 𝑈 ̃𝑏𝑡 (12.13)

(Here we use 𝑏 to remind ourselves that we are creating a basis vector.)
Since we are now using a full SVD, 𝑈𝑈⊤ = 𝐼𝑚×𝑚.

So it follows from equation (12.12) that we can reconstruct 𝑋𝑡 from ̃𝑏𝑡.
In particular,

• Equation (12.12) serves as an encoder that rotates the 𝑚 × 1 vector 𝑋𝑡 to become an 𝑚 × 1 vector ̃𝑏𝑡

• Equation (12.13) serves as a decoder that reconstructs the 𝑚 × 1 vector 𝑋𝑡 by rotating the 𝑚 × 1 vector ̃𝑏𝑡

Define a transition matrix for an 𝑚 × 1 basis vector ̃𝑏𝑡 by

̃𝐴 = 𝑈⊤ ̂𝐴𝑈 (12.14)

We can recover ̂𝐴 from

̂𝐴 = 𝑈 ̃𝐴𝑈⊤

Dynamics of the 𝑚 × 1 basis vector ̃𝑏𝑡 are governed by

̃𝑏𝑡+1 = ̃𝐴 ̃𝑏𝑡

To construct forecasts 𝑋𝑡 of future values of 𝑋𝑡 conditional on 𝑋1, we can apply decoders (i.e., rotators) to both sides
of this equation and deduce

𝑋𝑡+1 = 𝑈 ̃𝐴𝑡𝑈⊤𝑋1

where we use 𝑋𝑡+1, 𝑡 ≥ 1 to denote a forecast.

12.4 Representation 2

This representation is related to one originally proposed by [Schmid, 2010].
It can be regarded as an intermediate step on the way to obtaining a related representation 3 to be presented later
As with Representation 1, we continue to

• use a full SVD and not a reduced SVD
As we observed and illustrated in a lecture about the Singular Value Decomposition

• (a) for a full SVD 𝑈𝑈⊤ = 𝐼𝑚×𝑚 and 𝑈⊤𝑈 = 𝐼𝑝×𝑝 are both identity matrices

• (b) for a reduced SVD of 𝑋, 𝑈⊤𝑈 is not an identity matrix.
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As we shall see later, a full SVD is too confining for what we ultimately want to do, namely, cope with situations in which
𝑈⊤𝑈 is not an identity matrix because we use a reduced SVD of 𝑋.
But for now, let’s proceed under the assumption that we are using a full SVD so that requirements (a) and (b) are both
satisfied.
Form an eigendecomposition of the 𝑚 × 𝑚 matrix ̃𝐴 = 𝑈⊤ ̂𝐴𝑈 defined in equation (12.14):

̃𝐴 = 𝑊Λ𝑊 −1 (12.15)

where Λ is a diagonal matrix of eigenvalues and 𝑊 is an 𝑚 × 𝑚 matrix whose columns are eigenvectors corresponding
to rows (eigenvalues) in Λ.
When 𝑈𝑈⊤ = 𝐼𝑚×𝑚, as is true with a full SVD of 𝑋, it follows that

̂𝐴 = 𝑈 ̃𝐴𝑈⊤ = 𝑈𝑊Λ𝑊 −1𝑈⊤ (12.16)

According to equation (12.16), the diagonal matrix Λ contains eigenvalues of ̂𝐴 and corresponding eigenvectors of ̂𝐴 are
columns of the matrix 𝑈𝑊 .
It follows that the systematic (i.e., not random) parts of the𝑋𝑡 dynamics captured by our first-order vector autoregressions
are described by

𝑋𝑡+1 = 𝑈𝑊Λ𝑊 −1𝑈⊤𝑋𝑡

Multiplying both sides of the above equation by 𝑊 −1𝑈⊤ gives

𝑊 −1𝑈⊤𝑋𝑡+1 = Λ𝑊 −1𝑈⊤𝑋𝑡

or

̂𝑏𝑡+1 = Λ ̂𝑏𝑡

where our encoder is

�̂�𝑡 = 𝑊 −1𝑈⊤𝑋𝑡

and our decoder is

𝑋𝑡 = 𝑈𝑊 ̂𝑏𝑡

We can use this representation to construct a predictor 𝑋𝑡+1 of 𝑋𝑡+1 conditional on 𝑋1 via:

𝑋𝑡+1 = 𝑈𝑊Λ𝑡𝑊 −1𝑈⊤𝑋1 (12.17)

In effect, [Schmid, 2010] defined an 𝑚 × 𝑚 matrix Φ𝑠 as

Φ𝑠 = 𝑈𝑊 (12.18)

and a generalized inverse

Φ+
𝑠 = 𝑊 −1𝑈⊤ (12.19)

[Schmid, 2010] then represented equation (12.17) as

𝑋𝑡+1 = Φ𝑠Λ𝑡Φ+
𝑠 𝑋1 (12.20)

Components of the basis vector ̂𝑏𝑡 = 𝑊 −1𝑈⊤𝑋𝑡 ≡ Φ+
𝑠 𝑋𝑡 are

DMD projected modes.
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To understand why they are called projected modes, notice that

Φ+
𝑠 = (Φ⊤

𝑠 Φ𝑠)−1Φ⊤
𝑠

so that the 𝑚 × 𝑝 matrix

̂𝑏 = Φ+
𝑠 𝑋

is a matrix of regression coefficients of the 𝑚 × 𝑛 matrix 𝑋 on the 𝑚 × 𝑝 matrix Φ𝑠.
We’ll say more about this interpretation in a related context when we discuss representation 3, which was suggested by
Tu et al. [Tu et al., 2014].
It is more appropriate to use representation 3 when, as is often the case in practice, we want to use a reduced SVD.

12.5 Representation 3

Departing from the procedures used to construct Representations 1 and 2, each of which deployed a full SVD, we now
use a reduced SVD.
Again, we let 𝑝 ≤ min(𝑚, 𝑛) be the rank of 𝑋.
Construct a reduced SVD

𝑋 = ̃𝑈Σ̃ ̃𝑉 ⊤,

where now ̃𝑈 is 𝑚 × 𝑝, Σ̃ is 𝑝 × 𝑝, and ̃𝑉 ⊤ is 𝑝 × 𝑛.
Our minimum-norm least-squares approximator of 𝐴 now has representation

̂𝐴 = 𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ (12.21)

Computing Dominant Eigenvectors of ̂𝐴
We begin by paralleling a step used to construct Representation 1, define a transition matrix for a rotated 𝑝 × 1 state ̃𝑏𝑡 by

̃𝐴 = ̃𝑈⊤ ̂𝐴 ̃𝑈 (12.22)

Interpretation as projection coefficients

[Brunton and Kutz, 2022] remark that ̃𝐴 can be interpreted in terms of a projection of ̂𝐴 onto the 𝑝 modes in ̃𝑈 .
To verify this, first note that, because ̃𝑈⊤ ̃𝑈 = 𝐼 , it follows that

̃𝐴 = ̃𝑈⊤ ̂𝐴 ̃𝑈 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ ̃𝑈 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ (12.23)

Next, we’ll just compute the regression coefficients in a projection of ̂𝐴 on ̃𝑈 using a standard least-squares formula

( ̃𝑈⊤ ̃𝑈)−1 ̃𝑈⊤ ̂𝐴 = ( ̃𝑈⊤ ̃𝑈)−1 ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ = ̃𝐴.

Thus, we have verified that ̃𝐴 is a least-squares projection of ̂𝐴 onto ̃𝑈 .
An Inverse Challenge
Because we are using a reduced SVD, ̃𝑈 ̃𝑈⊤ ≠ 𝐼 .
Consequently,

̂𝐴 ≠ ̃𝑈 ̃𝐴 ̃𝑈⊤,
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so we can’t simply recover ̂𝐴 from ̃𝐴 and ̃𝑈 .
A Blind Alley

We can start by hoping for the best and proceeding to construct an eigendecomposition of the 𝑝 × 𝑝 matrix ̃𝐴:
̃𝐴 = �̃�Λ�̃� −1 (12.24)

where Λ is a diagonal matrix of 𝑝 eigenvalues and the columns of �̃� are corresponding eigenvectors.
Mimicking our procedure in Representation 2, we cross our fingers and compute an 𝑚 × 𝑝 matrix

Φ̃𝑠 = ̃𝑈�̃� (12.25)

that corresponds to (12.18) for a full SVD.

At this point, where ̂𝐴 is given by formula (12.21) it is interesting to compute ̂𝐴Φ̃𝑠:

̂𝐴Φ̃𝑠 = (𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤)( ̃𝑈�̃� )
= 𝑋′ ̃𝑉 Σ̃−1�̃�
≠ ( ̃𝑈�̃� )Λ
= Φ̃𝑠Λ

That ̂𝐴Φ̃𝑠 ≠ Φ̃𝑠Λ means that, unlike the corresponding situation in Representation 2, columns of Φ̃𝑠 = ̃𝑈�̃� are not
eigenvectors of ̂𝐴 corresponding to eigenvalues on the diagonal of matix Λ.
An Approach That Works

Continuing our quest for eigenvectors of ̂𝐴 that we can compute with a reduced SVD, let’s define an 𝑚 × 𝑝 matrix Φ as

Φ ≡ ̂𝐴Φ̃𝑠 = 𝑋′ ̃𝑉 Σ̃−1�̃� (12.26)

It turns out that columns of Φ are eigenvectors of ̂𝐴.
This is a consequence of a result established by Tu et al. [Tu et al., 2014] that we now present.

Proposition The 𝑝 columns of Φ are eigenvectors of ̂𝐴.
Proof: From formula (12.26) we have

̂𝐴Φ = (𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤)(𝑋′ ̃𝑉 Σ−1�̃� )
= 𝑋′ ̃𝑉 Σ̃−1 ̃𝐴�̃�
= 𝑋′ ̃𝑉 Σ̃−1�̃�Λ
= ΦΛ

so that

̂𝐴Φ = ΦΛ. (12.27)

Let 𝜙𝑖 be the 𝑖th column of Φ and 𝜆𝑖 be the corresponding 𝑖 eigenvalue of ̃𝐴 from decomposition (12.24).
Equating the 𝑚 × 1 vectors that appear on the two sides of equation (12.27) gives

̂𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖.

This equation confirms that 𝜙𝑖 is an eigenvector of ̂𝐴 that corresponds to eigenvalue 𝜆𝑖 of both ̃𝐴 and ̂𝐴.
This concludes the proof.
Also see [Brunton and Kutz, 2022] (p. 238)
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12.5.1 Decoder of ̌𝑏 as a linear projection

From eigendecomposition (12.27) we can represent ̂𝐴 as

̂𝐴 = ΦΛΦ+. (12.28)

From formula (12.28) we can deduce dynamics of the 𝑝 × 1 vector �̌�𝑡:

̌𝑏𝑡+1 = Λ ̌𝑏𝑡

where

̌𝑏𝑡 = Φ+𝑋𝑡 (12.29)

Since the 𝑚 × 𝑝 matrix Φ has 𝑝 linearly independent columns, the generalized inverse of Φ is

Φ+ = (Φ⊤Φ)−1Φ⊤

and so

̌𝑏 = (Φ⊤Φ)−1Φ⊤𝑋 (12.30)

The 𝑝×𝑛matrix ̌𝑏 is recognizable as a matrix of least squares regression coefficients of the𝑚×𝑛matrix𝑋 on the𝑚×𝑝
matrix Φ and consequently

�̌� = Φ ̌𝑏 (12.31)

is an 𝑚 × 𝑛 matrix of least squares projections of 𝑋 on Φ.
Variance Decomposition of 𝑋
By virtue of the least-squares projection theory discussed in this quantecon lecture https://python-advanced.quantecon.
org/orth_proj.html, we can represent 𝑋 as the sum of the projection �̌� of 𝑋 on Φ plus a matrix of errors.
To verify this, note that the least squares projection �̌� is related to 𝑋 by

𝑋 = �̌� + 𝜖

or

𝑋 = Φ ̌𝑏 + 𝜖 (12.32)

where 𝜖 is an 𝑚 × 𝑛 matrix of least squares errors satisfying the least squares orthogonality conditions 𝜖⊤Φ = 0 or

(𝑋 − Φ ̌𝑏)⊤Φ = 0𝑚×𝑝 (12.33)

Rearranging the orthogonality conditions (12.33) gives 𝑋⊤Φ = ̌𝑏Φ⊤Φ, which implies formula (12.30).

12.5.2 An Approximation

We now describe a way to approximate the 𝑝 × 1 vector �̌�𝑡 instead of using formula (12.29).
In particular, the following argument adapted from [Brunton and Kutz, 2022] (page 240) provides a computationally
efficient way to approximate ̌𝑏𝑡.
For convenience, we’ll apply the method at time 𝑡 = 1.
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For 𝑡 = 1, from equation (12.32) we have

�̌�1 = Φ ̌𝑏1 (12.34)

where ̌𝑏1 is a 𝑝 × 1 vector.
Recall from representation 1 above that 𝑋1 = 𝑈 ̃𝑏1, where ̃𝑏1 is a time 1 basis vector for representation 1 and 𝑈 is from
the full SVD 𝑋 = 𝑈Σ𝑉 ⊤.
It then follows from equation (12.32) that

𝑈 ̃𝑏1 = 𝑋′ ̃𝑉 Σ̃−1�̃� ̌𝑏1 + 𝜖1

where 𝜖1 is a least-squares error vector from equation (12.32).
It follows that

̃𝑏1 = 𝑈⊤𝑋′𝑉 Σ̃−1�̃� ̌𝑏1 + 𝑈⊤𝜖1

Replacing the error term 𝑈⊤𝜖1 by zero, and replacing 𝑈 from a full SVD of 𝑋 with ̃𝑈 from a reduced SVD, we obtain
an approximation ̂𝑏1 to ̃𝑏1:

̂𝑏1 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1�̃� ̌𝑏1

Recall that from equation (12.23), ̃𝐴 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1.
It then follows that

̂𝑏1 = ̃𝐴�̃� ̌𝑏1

and therefore, by the eigendecomposition (12.24) of ̃𝐴, we have

̂𝑏1 = �̃�Λ ̌𝑏1

Consequently,

̂𝑏1 = (�̃�Λ)−1 ̃𝑏1

or

̂𝑏1 = (�̃�Λ)−1 ̃𝑈⊤𝑋1, (12.35)

which is a computationally efficient approximation to the following instance of equation (12.29) for the initial vector �̌�1:

̌𝑏1 = Φ+𝑋1 (12.36)

(To highlight that (12.35) is an approximation, users of DMD sometimes call components of basis vector ̌𝑏𝑡 = Φ+𝑋𝑡 the
exact DMD modes and components of ̂𝑏𝑡 = (�̃�Λ)−1 ̃𝑈⊤𝑋𝑡 the approximate modes.)

Conditional on 𝑋𝑡, we can compute a decoded �̌�𝑡+𝑗, 𝑗 = 1, 2, … from the exact modes via

�̌�𝑡+𝑗 = ΦΛ𝑗Φ+𝑋𝑡 (12.37)

or use compute a decoded �̂�𝑡+𝑗 from approximate modes via

�̂�𝑡+𝑗 = ΦΛ𝑗(�̃�Λ)−1 ̃𝑈⊤𝑋𝑡. (12.38)

We can then use a decoded �̌�𝑡+𝑗 or �̂�𝑡+𝑗 to forecast 𝑋𝑡+𝑗.
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12.5.3 Using Fewer Modes

In applications, we’ll actually use only a few modes, often three or less.
Some of the preceding formulas assume that we have retained all 𝑝 modes associated with singular values of 𝑋.
We can adjust our formulas to describe a situation in which we instead retain only the 𝑟 < 𝑝 largest singular values.
In that case, we simply replace Σ̃ with the appropriate 𝑟 × 𝑟 matrix of singular values, ̃𝑈 with the 𝑚 × 𝑟 matrix whose
columns correspond to the 𝑟 largest singular values, and ̃𝑉 with the 𝑛 × 𝑟 matrix whose columns correspond to the 𝑟
largest singular values.
Counterparts of all of the salient formulas above then apply.

12.6 Source for Some Python Code

You can find a Python implementation of DMD here:
https://mathlab.sissa.it/pydmd
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CHAPTER

THIRTEEN

FINITE MARKOV CHAINS

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

13.1 Overview

Markov chains are one of the most useful classes of stochastic processes, being
• simple, flexible and supported by many elegant theoretical results
• valuable for building intuition about random dynamic models
• central to quantitative modeling in their own right

You will find them in many of the workhorse models of economics and finance.
In this lecture, we review some of the theory of Markov chains.
We will also introduce some of the high-quality routines for working with Markov chains available in QuantEcon.py.
Prerequisite knowledge is basic probability and linear algebra.
Let’s start with some standard imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import quantecon as qe
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

13.2 Definitions

The following concepts are fundamental.
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13.2.1 Stochastic Matrices

A stochastic matrix (orMarkov matrix) is an 𝑛 × 𝑛 square matrix 𝑃 such that
1. each element of 𝑃 is nonnegative, and
2. each row of 𝑃 sums to one

Each row of 𝑃 can be regarded as a probability mass function over 𝑛 possible outcomes.
It is too not difficult to check1 that if 𝑃 is a stochastic matrix, then so is the 𝑘-th power 𝑃 𝑘 for all 𝑘 ∈ ℕ.

13.2.2 Markov Chains

There is a close connection between stochastic matrices and Markov chains.
To begin, let 𝑆 be a finite set with 𝑛 elements {𝑥1, … , 𝑥𝑛}.
The set 𝑆 is called the state space and 𝑥1, … , 𝑥𝑛 are the state values.
AMarkov chain {𝑋𝑡} on 𝑆 is a sequence of random variables on 𝑆 that have theMarkov property.
This means that, for any date 𝑡 and any state 𝑦 ∈ 𝑆,

ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡} = ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡, 𝑋𝑡−1, …} (13.1)

In other words, knowing the current state is enough to know probabilities for future states.
In particular, the dynamics of a Markov chain are fully determined by the set of values

𝑃(𝑥, 𝑦) ∶= ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} (𝑥, 𝑦 ∈ 𝑆) (13.2)

By construction,
• 𝑃(𝑥, 𝑦) is the probability of going from 𝑥 to 𝑦 in one unit of time (one step)
• 𝑃(𝑥, ⋅) is the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥

We can view 𝑃 as a stochastic matrix where

𝑃𝑖𝑗 = 𝑃(𝑥𝑖, 𝑥𝑗) 1 ≤ 𝑖, 𝑗 ≤ 𝑛

Going the other way, if we take a stochastic matrix 𝑃 , we can generate a Markov chain {𝑋𝑡} as follows:
• draw 𝑋0 from a marginal distribution 𝜓
• for each 𝑡 = 0, 1, …, draw 𝑋𝑡+1 from 𝑃(𝑋𝑡, ⋅)

By construction, the resulting process satisfies (13.2).

13.2.3 Example 1

Consider a worker who, at any given time 𝑡, is either unemployed (state 0) or employed (state 1).
Suppose that, over a one month period,

1. An unemployed worker finds a job with probability 𝛼 ∈ (0, 1).
2. An employed worker loses her job and becomes unemployed with probability 𝛽 ∈ (0, 1).
1 Hint: First show that if 𝑃 and 𝑄 are stochastic matrices then so is their product — to check the row sums, try post multiplying by a column vector

of ones. Finally, argue that 𝑃 𝑛 is a stochastic matrix using induction.
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In terms of a Markov model, we have
• 𝑆 = {0, 1}
• 𝑃(0, 1) = 𝛼 and 𝑃(1, 0) = 𝛽

We can write out the transition probabilities in matrix form as

𝑃 = ( 1 − 𝛼 𝛼
𝛽 1 − 𝛽 ) (13.3)

Once we have the values 𝛼 and 𝛽, we can address a range of questions, such as
• What is the average duration of unemployment?
• Over the long-run, what fraction of time does a worker find herself unemployed?
• Conditional on employment, what is the probability of becoming unemployed at least once over the next 12months?

We’ll cover such applications below.

13.2.4 Example 2

From US unemployment data, Hamilton [Hamilton, 2005] estimated the stochastic matrix

𝑃 = ⎛⎜
⎝

0.971 0.029 0
0.145 0.778 0.077

0 0.508 0.492
⎞⎟
⎠

where
• the frequency is monthly
• the first state represents “normal growth”
• the second state represents “mild recession”
• the third state represents “severe recession”

For example, the matrix tells us that when the state is normal growth, the state will again be normal growth next month
with probability 0.97.
In general, large values on the main diagonal indicate persistence in the process {𝑋𝑡}.
This Markov process can also be represented as a directed graph, with edges labeled by transition probabilities

Here “ng” is normal growth, “mr” is mild recession, etc.
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13.3 Simulation

One natural way to answer questions about Markov chains is to simulate them.
(To approximate the probability of event 𝐸, we can simulate many times and count the fraction of times that 𝐸 occurs).
Nice functionality for simulating Markov chains exists in QuantEcon.py.

• Efficient, bundled with lots of other useful routines for handling Markov chains.
However, it’s also a good exercise to roll our own routines — let’s do that first and then come back to the methods in
QuantEcon.py.
In these exercises, we’ll take the state space to be 𝑆 = 0, … , 𝑛 − 1.

13.3.1 Rolling Our Own

To simulate a Markov chain, we need its stochastic matrix 𝑃 and a marginal probability distribution 𝜓 from which to
draw a realization of 𝑋0.
The Markov chain is then constructed as discussed above. To repeat:

1. At time 𝑡 = 0, draw a realization of 𝑋0 from 𝜓.
2. At each subsequent time 𝑡, draw a realization of the new state 𝑋𝑡+1 from 𝑃(𝑋𝑡, ⋅).

To implement this simulation procedure, we need a method for generating draws from a discrete distribution.
For this task, we’ll use random.draw from QuantEcon, which works as follows:

ψ = (0.3, 0.7) # probabilities over {0, 1}
cdf = np.cumsum(ψ) # convert into cummulative distribution
qe.random.draw(cdf, 5) # generate 5 independent draws from ψ

array([1, 1, 1, 1, 1])

We’ll write our code as a function that accepts the following three arguments
• A stochastic matrix P
• An initial state init
• A positive integer sample_size representing the length of the time series the function should return

def mc_sample_path(P, ψ_0=None, sample_size=1_000):

# set up
P = np.asarray(P)
X = np.empty(sample_size, dtype=int)

# Convert each row of P into a cdf
n = len(P)
P_dist = [np.cumsum(P[i, :]) for i in range(n)]

# draw initial state, defaulting to 0
if ψ_0 is not None:

X_0 = qe.random.draw(np.cumsum(ψ_0))
else:

X_0 = 0

(continues on next page)
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(continued from previous page)

# simulate
X[0] = X_0
for t in range(sample_size - 1):

X[t+1] = qe.random.draw(P_dist[X[t]])

return X

Let’s see how it works using the small matrix

P = [[0.4, 0.6],
[0.2, 0.8]]

As we’ll see later, for a long series drawn from P, the fraction of the sample that takes value 0 will be about 0.25.
Moreover, this is true, regardless of the initial distribution from which 𝑋0 is drawn.
The following code illustrates this

X = mc_sample_path(P, ψ_0=[0.1, 0.9], sample_size=100_000)
np.mean(X == 0)

0.25093

You can try changing the initial distribution to confirm that the output is always close to 0.25, at least for the P matrix
above.

13.3.2 Using QuantEcon’s Routines

As discussed above, QuantEcon.py has routines for handling Markov chains, including simulation.
Here’s an illustration using the same P as the preceding example

from quantecon import MarkovChain

mc = qe.MarkovChain(P)
X = mc.simulate(ts_length=1_000_000)
np.mean(X == 0)

0.249151

The QuantEcon.py routine is JIT compiled and much faster.

%time mc_sample_path(P, sample_size=1_000_000) # Our homemade code version

CPU times: user 927 ms, sys: 462 µs, total: 927 ms
Wall time: 927 ms

array([0, 0, 0, ..., 1, 1, 0])
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%time mc.simulate(ts_length=1_000_000) # qe code version

CPU times: user 14.3 ms, sys: 0 ns, total: 14.3 ms
Wall time: 14 ms

array([1, 1, 1, ..., 1, 1, 1])

Adding State Values and Initial Conditions

If we wish to, we can provide a specification of state values to MarkovChain.
These state values can be integers, floats, or even strings.
The following code illustrates

mc = qe.MarkovChain(P, state_values=('unemployed', 'employed'))
mc.simulate(ts_length=4, init='employed')

array(['employed', 'employed', 'employed', 'employed'], dtype='<U10')

mc.simulate(ts_length=4, init='unemployed')

array(['unemployed', 'unemployed', 'unemployed', 'employed'], dtype='<U10')

mc.simulate(ts_length=4) # Start at randomly chosen initial state

array(['unemployed', 'unemployed', 'employed', 'employed'], dtype='<U10')

If we want to see indices rather than state values as outputs as we can use

mc.simulate_indices(ts_length=4)

array([1, 1, 1, 0])

13.4 Marginal Distributions

Suppose that
1. {𝑋𝑡} is a Markov chain with stochastic matrix 𝑃
2. the marginal distribution of 𝑋𝑡 is known to be 𝜓𝑡

What then is the marginal distribution of 𝑋𝑡+1, or, more generally, of 𝑋𝑡+𝑚?
To answer this, we let 𝜓𝑡 be the marginal distribution of 𝑋𝑡 for 𝑡 = 0, 1, 2, ….
Our first aim is to find 𝜓𝑡+1 given 𝜓𝑡 and 𝑃 .
To begin, pick any 𝑦 ∈ 𝑆.
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Using the law of total probability, we can decompose the probability that 𝑋𝑡+1 = 𝑦 as follows:

ℙ{𝑋𝑡+1 = 𝑦} = ∑
𝑥∈𝑆

ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} ⋅ ℙ{𝑋𝑡 = 𝑥}

In words, to get the probability of being at 𝑦 tomorrow, we account for all ways this can happen and sum their probabilities.
Rewriting this statement in terms of marginal and conditional probabilities gives

𝜓𝑡+1(𝑦) = ∑
𝑥∈𝑆

𝑃(𝑥, 𝑦)𝜓𝑡(𝑥)

There are 𝑛 such equations, one for each 𝑦 ∈ 𝑆.
If we think of 𝜓𝑡+1 and 𝜓𝑡 as row vectors, these 𝑛 equations are summarized by the matrix expression

𝜓𝑡+1 = 𝜓𝑡𝑃 (13.4)

Thus, to move a marginal distribution forward one unit of time, we postmultiply by 𝑃 .
By postmultiplying 𝑚 times, we move a marginal distribution forward 𝑚 steps into the future.
Hence, iterating on (13.4), the expression 𝜓𝑡+𝑚 = 𝜓𝑡𝑃 𝑚 is also valid — here 𝑃 𝑚 is the 𝑚-th power of 𝑃 .
As a special case, we see that if 𝜓0 is the initial distribution from which 𝑋0 is drawn, then 𝜓0𝑃 𝑚 is the distribution of
𝑋𝑚.
This is very important, so let’s repeat it

𝑋0 ∼ 𝜓0 ⟹ 𝑋𝑚 ∼ 𝜓0𝑃 𝑚 (13.5)

and, more generally,

𝑋𝑡 ∼ 𝜓𝑡 ⟹ 𝑋𝑡+𝑚 ∼ 𝜓𝑡𝑃 𝑚 (13.6)

13.4.1 Multiple Step Transition Probabilities

We know that the probability of transitioning from 𝑥 to 𝑦 in one step is 𝑃(𝑥, 𝑦).
It turns out that the probability of transitioning from 𝑥 to 𝑦 in 𝑚 steps is 𝑃 𝑚(𝑥, 𝑦), the (𝑥, 𝑦)-th element of the 𝑚-th
power of 𝑃 .
To see why, consider again (13.6), but now with a 𝜓𝑡 that puts all probability on state 𝑥 so that the transition probabilities
are

• 1 in the 𝑥-th position and zero elsewhere
Inserting this into (13.6), we see that, conditional on 𝑋𝑡 = 𝑥, the distribution of 𝑋𝑡+𝑚 is the 𝑥-th row of 𝑃 𝑚.
In particular

ℙ{𝑋𝑡+𝑚 = 𝑦 | 𝑋𝑡 = 𝑥} = 𝑃 𝑚(𝑥, 𝑦) = (𝑥, 𝑦)-th element of 𝑃 𝑚

13.4.2 Example: Probability of Recession

Recall the stochastic matrix 𝑃 for recession and growth considered above.
Suppose that the current state is unknown — perhaps statistics are available only at the end of the current month.
We guess that the probability that the economy is in state 𝑥 is 𝜓(𝑥).
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The probability of being in recession (either mild or severe) in 6 months time is given by the inner product

𝜓𝑃 6 ⋅ ⎛⎜
⎝

0
1
1

⎞⎟
⎠

13.4.3 Example 2: Cross-Sectional Distributions

The marginal distributions we have been studying can be viewed either as probabilities or as cross-sectional frequencies
that a Law of Large Numbers leads us to anticipate for large samples.
To illustrate, recall our model of employment/unemployment dynamics for a given worker discussed above.
Consider a large population of workers, each of whose lifetime experience is described by the specified dynamics, with
each worker’s outcomes being realizations of processes that are statistically independent of all other workers’ processes.
Let 𝜓 be the current cross-sectional distribution over {0, 1}.
The cross-sectional distribution records fractions of workers employed and unemployed at a given moment.

• For example, 𝜓(0) is the unemployment rate.
What will the cross-sectional distribution be in 10 periods hence?
The answer is 𝜓𝑃 10, where 𝑃 is the stochastic matrix in (13.3).
This is because each worker’s state evolves according to𝑃 , so𝜓𝑃 10 is a marginal distibution for a single randomly selected
worker.
But when the sample is large, outcomes and probabilities are roughly equal (by an application of the Law of Large
Numbers).
So for a very large (tending to infinite) population, 𝜓𝑃 10 also represents fractions of workers in each state.
This is exactly the cross-sectional distribution.

13.5 Irreducibility and Aperiodicity

Irreducibility and aperiodicity are central concepts of modern Markov chain theory.
Let’s see what they’re about.

13.5.1 Irreducibility

Let 𝑃 be a fixed stochastic matrix.
Two states 𝑥 and 𝑦 are said to communicate with each other if there exist positive integers 𝑗 and 𝑘 such that

𝑃 𝑗(𝑥, 𝑦) > 0 and 𝑃 𝑘(𝑦, 𝑥) > 0

In view of our discussion above, this means precisely that
• state 𝑥 can eventually be reached from state 𝑦, and
• state 𝑦 can eventually be reached from state 𝑥
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The stochastic matrix 𝑃 is called irreducible if all states communicate; that is, if 𝑥 and 𝑦 communicate for all (𝑥, 𝑦) in
𝑆 × 𝑆.
For example, consider the following transition probabilities for wealth of a fictitious set of households
We can translate this into a stochastic matrix, putting zeros where there’s no edge between nodes

𝑃 ∶= ⎛⎜
⎝

0.9 0.1 0
0.4 0.4 0.2
0.1 0.1 0.8

⎞⎟
⎠

It’s clear from the graph that this stochastic matrix is irreducible: we can eventually reach any state from any other state.
We can also test this using QuantEcon.py’s MarkovChain class

P = [[0.9, 0.1, 0.0],
[0.4, 0.4, 0.2],
[0.1, 0.1, 0.8]]

mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible

True

Here’s a more pessimistic scenario in which poor people remain poor forever
This stochastic matrix is not irreducible, since, for example, rich is not accessible from poor.
Let’s confirm this

P = [[1.0, 0.0, 0.0],
[0.1, 0.8, 0.1],
[0.0, 0.2, 0.8]]

mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible

False

We can also determine the “communication classes”

mc.communication_classes
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[array(['poor'], dtype='<U6'), array(['middle', 'rich'], dtype='<U6')]

It might be clear to you already that irreducibility is going to be important in terms of long run outcomes.
For example, poverty is a life sentence in the second graph but not the first.
We’ll come back to this a bit later.

13.5.2 Aperiodicity

Loosely speaking, a Markov chain is called periodic if it cycles in a predictable way, and aperiodic otherwise.
Here’s a trivial example with three states

The chain cycles with period 3:

P = [[0, 1, 0],
[0, 0, 1],
[1, 0, 0]]

mc = qe.MarkovChain(P)
mc.period
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3

More formally, the period of a state 𝑥 is the largest common divisor of a set of integers

𝐷(𝑥) ∶= {𝑗 ≥ 1 ∶ 𝑃 𝑗(𝑥, 𝑥) > 0}

In the last example, 𝐷(𝑥) = {3, 6, 9, …} for every state 𝑥, so the period is 3.
A stochastic matrix is called aperiodic if the period of every state is 1, and periodic otherwise.
For example, the stochastic matrix associated with the transition probabilities below is periodic because, for example,
state 𝑎 has period 2

We can confirm that the stochastic matrix is periodic with the following code

P = [[0.0, 1.0, 0.0, 0.0],
[0.5, 0.0, 0.5, 0.0],
[0.0, 0.5, 0.0, 0.5],
[0.0, 0.0, 1.0, 0.0]]

mc = qe.MarkovChain(P)
mc.period

2

mc.is_aperiodic

False

13.6 Stationary Distributions

As seen in (13.4), we can shift a marginal distribution forward one unit of time via postmultiplication by 𝑃 .
Some distributions are invariant under this updating process — for example,

P = np.array([[0.4, 0.6],
[0.2, 0.8]])

ψ = (0.25, 0.75)
ψ @ P

array([0.25, 0.75])

Such distributions are called stationary or invariant.
Formally, a marginal distribution 𝜓∗ on 𝑆 is called stationary for 𝑃 if 𝜓∗ = 𝜓∗𝑃 .
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(This is the same notion of stationarity that we learned about in the lecture on AR(1) processes applied to a different
setting.)
From this equality, we immediately get 𝜓∗ = 𝜓∗𝑃 𝑡 for all 𝑡.
This tells us an important fact: If the distribution of𝑋0 is a stationary distribution, then𝑋𝑡 will have this same distribution
for all 𝑡.
Hence stationary distributions have a natural interpretation as stochastic steady states—we’ll discuss this more soon.
Mathematically, a stationary distribution is a fixed point of 𝑃 when 𝑃 is thought of as the map 𝜓 ↦ 𝜓𝑃 from (row)
vectors to (row) vectors.
Theorem. Every stochastic matrix 𝑃 has at least one stationary distribution.
(We are assuming here that the state space 𝑆 is finite; if not more assumptions are required)
For proof of this result, you can apply Brouwer’s fixed point theorem, or see EDTC, theorem 4.3.5.
There can be many stationary distributions corresponding to a given stochastic matrix 𝑃 .

• For example, if 𝑃 is the identity matrix, then all marginal distributions are stationary.
To get uniqueness an invariant distribution, the transition matrix 𝑃 must have the property that no nontrivial subsets of
the state space are infinitely persistent.
A subset of the state space is infinitely persistent if other parts of the state space cannot be accessed from it.
Thus, infinite persistence of a non-trivial subset is the opposite of irreducibility.
This gives some intuition for the following fundamental theorem.
Theorem. If 𝑃 is both aperiodic and irreducible, then

1. 𝑃 has exactly one stationary distribution 𝜓∗.
2. For any initial marginal distribution 𝜓0, we have ‖𝜓0𝑃 𝑡 − 𝜓∗‖ → 0 as 𝑡 → ∞.

For a proof, see, for example, theorem 5.2 of [Häggström, 2002].
(Note that part 1 of the theorem only requires irreducibility, whereas part 2 requires both irreducibility and aperiodicity)
A stochastic matrix that satisfies the conditions of the theorem is sometimes called uniformly ergodic.
A sufficient condition for aperiodicity and irreducibility is that every element of 𝑃 is strictly positive.

• Try to convince yourself of this.

13.6.1 Example

Recall our model of the employment/unemployment dynamics of a particular worker discussed above.
Assuming 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), the uniform ergodicity condition is satisfied.
Let 𝜓∗ = (𝑝, 1 − 𝑝) be the stationary distribution, so that 𝑝 corresponds to unemployment (state 0).
Using 𝜓∗ = 𝜓∗𝑃 and a bit of algebra yields

𝑝 = 𝛽
𝛼 + 𝛽

This is, in some sense, a steady state probability of unemployment — more about the interpretation of this below.
Not surprisingly it tends to zero as 𝛽 → 0, and to one as 𝛼 → 0.
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13.6.2 Calculating Stationary Distributions

As discussed above, a particular Markov matrix 𝑃 can have many stationary distributions.
That is, there can be many row vectors 𝜓 such that 𝜓 = 𝜓𝑃 .
In fact if 𝑃 has two distinct stationary distributions 𝜓1, 𝜓2 then it has infinitely many, since in this case, as you can verify,
for any 𝜆 ∈ [0, 1]

𝜓3 ∶= 𝜆𝜓1 + (1 − 𝜆)𝜓2

is a stationary distribution for 𝑃 .
If we restrict attention to the case in which only one stationary distribution exists, one way to finding it is to solve the
system

𝜓(𝐼𝑛 − 𝑃) = 0 (13.7)

for 𝜓, where 𝐼𝑛 is the 𝑛 × 𝑛 identity.
But the zero vector solves system (13.7), so we must proceed cautiously.
We want to impose the restriction that 𝜓 is a probability distribution.
There are various ways to do this.
One option is to regard solving system (13.7) as an eigenvector problem: a vector 𝜓 such that 𝜓 = 𝜓𝑃 is a left eigenvector
associated with the unit eigenvalue 𝜆 = 1.
A stable and sophisticated algorithm specialized for stochastic matrices is implemented in QuantEcon.py.
This is the one we recommend:

P = [[0.4, 0.6],
[0.2, 0.8]]

mc = qe.MarkovChain(P)
mc.stationary_distributions # Show all stationary distributions

array([[0.25, 0.75]])

13.6.3 Convergence to Stationarity

Part 2 of the Markov chain convergence theorem stated above tells us that the marginal distribution of 𝑋𝑡 converges to
the stationary distribution regardless of where we begin.
This adds considerable authority to our interpretation of 𝜓∗ as a stochastic steady state.
The convergence in the theorem is illustrated in the next figure

P = ((0.971, 0.029, 0.000),
(0.145, 0.778, 0.077),
(0.000, 0.508, 0.492))

P = np.array(P)

ψ = (0.0, 0.2, 0.8) # Initial condition

fig = plt.figure(figsize=(8, 6))

(continues on next page)
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(continued from previous page)

ax = fig.add_subplot(111, projection='3d')

ax.set(xlim=(0, 1), ylim=(0, 1), zlim=(0, 1),
xticks=(0.25, 0.5, 0.75),
yticks=(0.25, 0.5, 0.75),
zticks=(0.25, 0.5, 0.75))

x_vals, y_vals, z_vals = [], [], []
for t in range(20):

x_vals.append(ψ[0])
y_vals.append(ψ[1])
z_vals.append(ψ[2])
ψ = ψ @ P

ax.scatter(x_vals, y_vals, z_vals, c='r', s=60)
ax.view_init(30, 210)

mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
ax.scatter(ψ_star[0], ψ_star[1], ψ_star[2], c='k', s=60)

plt.show()

Here
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• 𝑃 is the stochastic matrix for recession and growth considered above.
• The highest red dot is an arbitrarily chosen initial marginal probability distribution 𝜓, represented as a vector in

ℝ3.
• The other red dots are the marginal distributions 𝜓𝑃 𝑡 for 𝑡 = 1, 2, ….
• The black dot is 𝜓∗.

You might like to try experimenting with different initial conditions.

13.7 Ergodicity

Under irreducibility, yet another important result obtains: for all 𝑥 ∈ 𝑆,

1
𝑚

𝑚
∑
𝑡=1

1{𝑋𝑡 = 𝑥} → 𝜓∗(𝑥) as 𝑚 → ∞ (13.8)

Here
• 1{𝑋𝑡 = 𝑥} = 1 if 𝑋𝑡 = 𝑥 and zero otherwise
• convergence is with probability one
• the result does not depend on the marginal distribution of 𝑋0

The result tells us that the fraction of time the chain spends at state 𝑥 converges to 𝜓∗(𝑥) as time goes to infinity.
This gives us another way to interpret the stationary distribution — provided that the convergence result in (13.8) is valid.
The convergence asserted in (13.8) is a special case of a law of large numbers result for Markov chains — see EDTC,
section 4.3.4 for some additional information.

13.7.1 Example

Recall our cross-sectional interpretation of the employment/unemployment model discussed above.
Assume that 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), so that irreducibility and aperiodicity both hold.
We saw that the stationary distribution is (𝑝, 1 − 𝑝), where

𝑝 = 𝛽
𝛼 + 𝛽

In the cross-sectional interpretation, this is the fraction of people unemployed.
In view of our latest (ergodicity) result, it is also the fraction of time that a single worker can expect to spend unemployed.
Thus, in the long-run, cross-sectional averages for a population and time-series averages for a given person coincide.
This is one aspect of the concept of ergodicity.
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13.8 Computing Expectations

We sometimes want to compute mathematical expectations of functions of 𝑋𝑡 of the form

𝔼[ℎ(𝑋𝑡)] (13.9)

and conditional expectations such as

𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥] (13.10)

where
• {𝑋𝑡} is a Markov chain generated by 𝑛 × 𝑛 stochastic matrix 𝑃
• ℎ is a given function, which, in terms of matrix algebra, we’ll think of as the column vector

ℎ = ⎛⎜
⎝

ℎ(𝑥1)
⋮

ℎ(𝑥𝑛)
⎞⎟
⎠

Computing the unconditional expectation (13.9) is easy.
We just sum over the marginal distribution of 𝑋𝑡 to get

𝔼[ℎ(𝑋𝑡)] = ∑
𝑥∈𝑆

(𝜓𝑃 𝑡)(𝑥)ℎ(𝑥)

Here 𝜓 is the distribution of 𝑋0.
Since 𝜓 and hence 𝜓𝑃 𝑡 are row vectors, we can also write this as

𝔼[ℎ(𝑋𝑡)] = 𝜓𝑃 𝑡ℎ

For the conditional expectation (13.10), we need to sum over the conditional distribution of 𝑋𝑡+𝑘 given 𝑋𝑡 = 𝑥.
We already know that this is 𝑃 𝑘(𝑥, ⋅), so

𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥] = (𝑃 𝑘ℎ)(𝑥) (13.11)

The vector 𝑃 𝑘ℎ stores the conditional expectation 𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥] over all 𝑥.

13.8.1 Iterated Expectations

The law of iterated expectations states that

𝔼 [𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥]] = 𝔼[ℎ(𝑋𝑡+𝑘)]

where the outer 𝔼 on the left side is an unconditional distribution taken with respect to the marginal distribution 𝜓𝑡 of 𝑋𝑡
(again see equation (13.6)).
To verify the law of iterated expectations, use equation (13.11) to substitute (𝑃 𝑘ℎ)(𝑥) for 𝐸[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥], write

𝔼 [𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥]] = 𝜓𝑡𝑃 𝑘ℎ,

and note 𝜓𝑡𝑃 𝑘ℎ = 𝜓𝑡+𝑘ℎ = 𝔼[ℎ(𝑋𝑡+𝑘)].
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13.8.2 Expectations of Geometric Sums

Sometimes we want to compute the mathematical expectation of a geometric sum, such as ∑𝑡 𝛽𝑡ℎ(𝑋𝑡).
In view of the preceding discussion, this is

𝔼[
∞

∑
𝑗=0

𝛽𝑗ℎ(𝑋𝑡+𝑗) ∣ 𝑋𝑡 = 𝑥] = [(𝐼 − 𝛽𝑃)−1ℎ](𝑥)

where

(𝐼 − 𝛽𝑃)−1 = 𝐼 + 𝛽𝑃 + 𝛽2𝑃 2 + ⋯

Premultiplication by (𝐼 − 𝛽𝑃)−1 amounts to “applying the resolvent operator”.

13.9 Exercises

Exercise 13.9.1
According to the discussion above, if a worker’s employment dynamics obey the stochastic matrix

𝑃 = ( 1 − 𝛼 𝛼
𝛽 1 − 𝛽 )

with 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), then, in the long-run, the fraction of time spent unemployed will be

𝑝 ∶= 𝛽
𝛼 + 𝛽

In other words, if {𝑋𝑡} represents the Markov chain for employment, then �̄�𝑚 → 𝑝 as 𝑚 → ∞, where

�̄�𝑚 ∶= 1
𝑚

𝑚
∑
𝑡=1

1{𝑋𝑡 = 0}

This exercise asks you to illustrate convergence by computing �̄�𝑚 for large 𝑚 and checking that it is close to 𝑝.
You will see that this statement is true regardless of the choice of initial condition or the values of 𝛼, 𝛽, provided both lie
in (0, 1).

Solution to Exercise 13.9.1
We will address this exercise graphically.
The plots show the time series of �̄�𝑚 − 𝑝 for two initial conditions.
As 𝑚 gets large, both series converge to zero.

α = β = 0.1
N = 10000
p = β / (α + β)

P = ((1 - α, α), # Careful: P and p are distinct
( β, 1 - β))

(continues on next page)
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(continued from previous page)

mc = MarkovChain(P)

fig, ax = plt.subplots(figsize=(9, 6))
ax.set_ylim(-0.25, 0.25)
ax.grid()
ax.hlines(0, 0, N, lw=2, alpha=0.6) # Horizonal line at zero

for x0, col in ((0, 'blue'), (1, 'green')):
# Generate time series for worker that starts at x0
X = mc.simulate(N, init=x0)
# Compute fraction of time spent unemployed, for each n
X_bar = (X == 0).cumsum() / (1 + np.arange(N, dtype=float))
# Plot
ax.fill_between(range(N), np.zeros(N), X_bar - p, color=col, alpha=0.1)
ax.plot(X_bar - p, color=col, label=f'$X_0 = \, {x0} $')
# Overlay in black--make lines clearer
ax.plot(X_bar - p, 'k-', alpha=0.6)

ax.legend(loc='upper right')
plt.show()

Exercise 13.9.2
A topic of interest for economics and many other disciplines is ranking.
Let’s now consider one of the most practical and important ranking problems— the rank assigned to web pages by search
engines.
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(Although the problem is motivated from outside of economics, there is in fact a deep connection between search ranking
systems and prices in certain competitive equilibria — see [Du et al., 2013].)
To understand the issue, consider the set of results returned by a query to a web search engine.
For the user, it is desirable to

1. receive a large set of accurate matches
2. have the matches returned in order, where the order corresponds to some measure of “importance”

Ranking according to a measure of importance is the problem we now consider.
The methodology developed to solve this problem by Google founders Larry Page and Sergey Brin is known as PageRank.
To illustrate the idea, consider the following diagram

Imagine that this is a miniature version of the WWW, with
• each node representing a web page
• each arrow representing the existence of a link from one page to another

Now let’s think about which pages are likely to be important, in the sense of being valuable to a search engine user.
One possible criterion for the importance of a page is the number of inbound links — an indication of popularity.
By this measure, m and j are the most important pages, with 5 inbound links each.
However, what if the pages linking to m, say, are not themselves important?
Thinking this way, it seems appropriate to weight the inbound nodes by relative importance.
The PageRank algorithm does precisely this.
A slightly simplified presentation that captures the basic idea is as follows.
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Letting 𝑗 be (the integer index of) a typical page and 𝑟𝑗 be its ranking, we set

𝑟𝑗 = ∑
𝑖∈𝐿𝑗

𝑟𝑖
ℓ𝑖

where
• ℓ𝑖 is the total number of outbound links from 𝑖
• 𝐿𝑗 is the set of all pages 𝑖 such that 𝑖 has a link to 𝑗

This is a measure of the number of inbound links, weighted by their own ranking (and normalized by 1/ℓ𝑖).
There is, however, another interpretation, and it brings us back to Markov chains.
Let 𝑃 be the matrix given by 𝑃(𝑖, 𝑗) = 1{𝑖 → 𝑗}/ℓ𝑖 where 1{𝑖 → 𝑗} = 1 if 𝑖 has a link to 𝑗 and zero otherwise.
The matrix 𝑃 is a stochastic matrix provided that each page has at least one link.
With this definition of 𝑃 we have

𝑟𝑗 = ∑
𝑖∈𝐿𝑗

𝑟𝑖
ℓ𝑖

= ∑
all 𝑖

1{𝑖 → 𝑗}𝑟𝑖
ℓ𝑖

= ∑
all 𝑖

𝑃(𝑖, 𝑗)𝑟𝑖

Writing 𝑟 for the row vector of rankings, this becomes 𝑟 = 𝑟𝑃 .
Hence 𝑟 is the stationary distribution of the stochastic matrix 𝑃 .
Let’s think of 𝑃(𝑖, 𝑗) as the probability of “moving” from page 𝑖 to page 𝑗.
The value 𝑃(𝑖, 𝑗) has the interpretation

• 𝑃(𝑖, 𝑗) = 1/𝑘 if 𝑖 has 𝑘 outbound links and 𝑗 is one of them
• 𝑃(𝑖, 𝑗) = 0 if 𝑖 has no direct link to 𝑗

Thus, motion from page to page is that of a web surfer who moves from one page to another by randomly clicking on one
of the links on that page.
Here “random” means that each link is selected with equal probability.
Since 𝑟 is the stationary distribution of 𝑃 , assuming that the uniform ergodicity condition is valid, we can interpret 𝑟𝑗 as
the fraction of time that a (very persistent) random surfer spends at page 𝑗.
Your exercise is to apply this ranking algorithm to the graph pictured above and return the list of pages ordered by rank.
There is a total of 14 nodes (i.e., web pages), the first named a and the last named n.
A typical line from the file has the form

d -> h;

This should be interpreted as meaning that there exists a link from d to h.
The data for this graph is shown below, and read into a file called web_graph_data.txt when the cell is executed.

%%file web_graph_data.txt
a -> d;
a -> f;
b -> j;
b -> k;
b -> m;
c -> c;
c -> g;

(continues on next page)
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(continued from previous page)

c -> j;
c -> m;
d -> f;
d -> h;
d -> k;
e -> d;
e -> h;
e -> l;
f -> a;
f -> b;
f -> j;
f -> l;
g -> b;
g -> j;
h -> d;
h -> g;
h -> l;
h -> m;
i -> g;
i -> h;
i -> n;
j -> e;
j -> i;
j -> k;
k -> n;
l -> m;
m -> g;
n -> c;
n -> j;
n -> m;

Overwriting web_graph_data.txt

To parse this file and extract the relevant information, you can use regular expressions.
The following code snippet provides a hint as to how you can go about this

import re
re.findall('\w', 'x +++ y ****** z') # \w matches alphanumerics

['x', 'y', 'z']

re.findall('\w', 'a ^^ b &&& $$ c')

['a', 'b', 'c']

When you solve for the ranking, you will find that the highest ranked node is in fact g, while the lowest is a.

Solution to Exercise 13.9.2
Here is one solution:
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"""
Return list of pages, ordered by rank
"""
import re
from operator import itemgetter

infile = 'web_graph_data.txt'
alphabet = 'abcdefghijklmnopqrstuvwxyz'

n = 14 # Total number of web pages (nodes)

# Create a matrix Q indicating existence of links
# * Q[i, j] = 1 if there is a link from i to j
# * Q[i, j] = 0 otherwise
Q = np.zeros((n, n), dtype=int)
with open(infile) as f:

edges = f.readlines()
for edge in edges:

from_node, to_node = re.findall('\w', edge)
i, j = alphabet.index(from_node), alphabet.index(to_node)
Q[i, j] = 1

# Create the corresponding Markov matrix P
P = np.empty((n, n))
for i in range(n):

P[i, :] = Q[i, :] / Q[i, :].sum()
mc = MarkovChain(P)
# Compute the stationary distribution r
r = mc.stationary_distributions[0]
ranked_pages = {alphabet[i] : r[i] for i in range(n)}
# Print solution, sorted from highest to lowest rank
print('Rankings\n ***')
for name, rank in sorted(ranked_pages.items(), key=itemgetter(1), reverse=1):

print(f'{name}: {rank:.4}')

Rankings
***

g: 0.1607
j: 0.1594
m: 0.1195
n: 0.1088
k: 0.09106
b: 0.08326
e: 0.05312
i: 0.05312
c: 0.04834
h: 0.0456
l: 0.03202
d: 0.03056
f: 0.01164
a: 0.002911

Exercise 13.9.3
In numerical work, it is sometimes convenient to replace a continuous model with a discrete one.
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In particular, Markov chains are routinely generated as discrete approximations to AR(1) processes of the form

𝑦𝑡+1 = 𝜌𝑦𝑡 + 𝑢𝑡+1

Here 𝑢𝑡 is assumed to be IID and 𝑁(0, 𝜎2
𝑢).

The variance of the stationary probability distribution of {𝑦𝑡} is

𝜎2
𝑦 ∶= 𝜎2

𝑢
1 − 𝜌2

Tauchen’s method [Tauchen, 1986] is the most common method for approximating this continuous state process with a
finite state Markov chain.
A routine for this already exists in QuantEcon.py but let’s write our own version as an exercise.
As a first step, we choose

• 𝑛, the number of states for the discrete approximation
• 𝑚, an integer that parameterizes the width of the state space

Next, we create a state space {𝑥0, … , 𝑥𝑛−1} ⊂ ℝ and a stochastic 𝑛 × 𝑛 matrix 𝑃 such that
• 𝑥0 = −𝑚 𝜎𝑦

• 𝑥𝑛−1 = 𝑚 𝜎𝑦

• 𝑥𝑖+1 = 𝑥𝑖 + 𝑠 where 𝑠 = (𝑥𝑛−1 − 𝑥0)/(𝑛 − 1)
Let 𝐹 be the cumulative distribution function of the normal distribution 𝑁(0, 𝜎2

𝑢).
The values 𝑃(𝑥𝑖, 𝑥𝑗) are computed to approximate the AR(1) process — omitting the derivation, the rules are as follows:

1. If 𝑗 = 0, then set

𝑃(𝑥𝑖, 𝑥𝑗) = 𝑃(𝑥𝑖, 𝑥0) = 𝐹(𝑥0 − 𝜌𝑥𝑖 + 𝑠/2)

2. If 𝑗 = 𝑛 − 1, then set

𝑃(𝑥𝑖, 𝑥𝑗) = 𝑃(𝑥𝑖, 𝑥𝑛−1) = 1 − 𝐹(𝑥𝑛−1 − 𝜌𝑥𝑖 − 𝑠/2)

3. Otherwise, set

𝑃(𝑥𝑖, 𝑥𝑗) = 𝐹(𝑥𝑗 − 𝜌𝑥𝑖 + 𝑠/2) − 𝐹(𝑥𝑗 − 𝜌𝑥𝑖 − 𝑠/2)

The exercise is to write a function approx_markov(rho, sigma_u, m=3, n=7) that returns {𝑥0, … , 𝑥𝑛−1} ⊂
ℝ and 𝑛 × 𝑛 matrix 𝑃 as described above.

• Even better, write a function that returns an instance of QuantEcon.py’s MarkovChain class.

Solution to Exercise 13.9.3
A solution from the QuantEcon.py library can be found here.
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CHAPTER

FOURTEEN

CONTINUOUS STATE MARKOV CHAINS

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

14.1 Overview

In a previous lecture, we learned about finite Markov chains, a relatively elementary class of stochastic dynamic models.
The present lecture extends this analysis to continuous (i.e., uncountable) state Markov chains.
Most stochastic dynamic models studied by economists either fit directly into this class or can be represented as continuous
state Markov chains after minor modifications.
In this lecture, our focus will be on continuous Markov models that

• evolve in discrete-time
• are often nonlinear

The fact that we accommodate nonlinear models here is significant, because linear stochastic models have their own highly
developed toolset, as we’ll see later on.
The question that interests us most is: Given a particular stochastic dynamic model, how will the state of the system evolve
over time?
In particular,

• What happens to the distribution of the state variables?
• Is there anything we can say about the “average behavior” of these variables?
• Is there a notion of “steady state” or “long-run equilibrium” that’s applicable to the model?

– If so, how can we compute it?
Answering these questions will lead us to revisit many of the topics that occupied us in the finite state case, such as
simulation, distribution dynamics, stability, ergodicity, etc.

Note: For some people, the term “Markov chain” always refers to a process with a finite or discrete state space. We
follow the mainstream mathematical literature (e.g., [Meyn and Tweedie, 2009]) in using the term to refer to any discrete
timeMarkov process.

Let’s begin with some imports:
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import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import lognorm, beta
from quantecon import LAE
from scipy.stats import norm, gaussian_kde

14.2 The Density Case

You are probably aware that some distributions can be represented by densities and some cannot.
(For example, distributions on the real numbers ℝ that put positive probability on individual points have no density rep-
resentation)
We are going to start our analysis by looking at Markov chains where the one-step transition probabilities have density
representations.
The benefit is that the density case offers a very direct parallel to the finite case in terms of notation and intuition.
Once we’ve built some intuition we’ll cover the general case.

14.2.1 Definitions and Basic Properties

In our lecture on finite Markov chains, we studied discrete-time Markov chains that evolve on a finite state space 𝑆.
In this setting, the dynamics of the model are described by a stochastic matrix— a nonnegative square matrix 𝑃 = 𝑃[𝑖, 𝑗]
such that each row 𝑃 [𝑖, ⋅] sums to one.
The interpretation of 𝑃 is that 𝑃 [𝑖, 𝑗] represents the probability of transitioning from state 𝑖 to state 𝑗 in one unit of time.
In symbols,

ℙ{𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖} = 𝑃 [𝑖, 𝑗]

Equivalently,
• 𝑃 can be thought of as a family of distributions 𝑃 [𝑖, ⋅], one for each 𝑖 ∈ 𝑆
• 𝑃 [𝑖, ⋅] is the distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑖

(As you probably recall, when using NumPy arrays, 𝑃 [𝑖, ⋅] is expressed as P[i,:])
In this section, we’ll allow 𝑆 to be a subset of ℝ, such as

• ℝ itself
• the positive reals (0, ∞)
• a bounded interval (𝑎, 𝑏)

The family of discrete distributions 𝑃 [𝑖, ⋅] will be replaced by a family of densities 𝑝(𝑥, ⋅), one for each 𝑥 ∈ 𝑆.
Analogous to the finite state case, 𝑝(𝑥, ⋅) is to be understood as the distribution (density) of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.
More formally, a stochastic kernel on 𝑆 is a function 𝑝 ∶ 𝑆 × 𝑆 → ℝ with the property that

1. 𝑝(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑆
2. ∫ 𝑝(𝑥, 𝑦)𝑑𝑦 = 1 for all 𝑥 ∈ 𝑆
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(Integrals are over the whole space unless otherwise specified)
For example, let 𝑆 = ℝ and consider the particular stochastic kernel 𝑝𝑤 defined by

𝑝𝑤(𝑥, 𝑦) ∶= 1√
2𝜋 exp{−(𝑦 − 𝑥)2

2 } (14.1)

What kind of model does 𝑝𝑤 represent?
The answer is, the (normally distributed) random walk

𝑋𝑡+1 = 𝑋𝑡 + 𝜉𝑡+1 where {𝜉𝑡}
IID∼ 𝑁(0, 1) (14.2)

To see this, let’s find the stochastic kernel 𝑝 corresponding to (14.2).
Recall that 𝑝(𝑥, ⋅) represents the distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.
Letting 𝑋𝑡 = 𝑥 in (14.2) and considering the distribution of 𝑋𝑡+1, we see that 𝑝(𝑥, ⋅) = 𝑁(𝑥, 1).
In other words, 𝑝 is exactly 𝑝𝑤, as defined in (14.1).

14.2.2 Connection to Stochastic Difference Equations

In the previous section, wemade the connection between stochastic difference equation (14.2) and stochastic kernel (14.1).
In economics and time-series analysis we meet stochastic difference equations of all different shapes and sizes.
It will be useful for us if we have some systematic methods for converting stochastic difference equations into stochastic
kernels.
To this end, consider the generic (scalar) stochastic difference equation given by

𝑋𝑡+1 = 𝜇(𝑋𝑡) + 𝜎(𝑋𝑡) 𝜉𝑡+1 (14.3)

Here we assume that
• {𝜉𝑡}

IID∼ 𝜙, where 𝜙 is a given density on ℝ
• 𝜇 and 𝜎 are given functions on 𝑆, with 𝜎(𝑥) > 0 for all 𝑥

Example 1: The random walk (14.2) is a special case of (14.3), with 𝜇(𝑥) = 𝑥 and 𝜎(𝑥) = 1.
Example 2: Consider the ARCH model

𝑋𝑡+1 = 𝛼𝑋𝑡 + 𝜎𝑡 𝜉𝑡+1, 𝜎2
𝑡 = 𝛽 + 𝛾𝑋2

𝑡 , 𝛽, 𝛾 > 0

Alternatively, we can write the model as

𝑋𝑡+1 = 𝛼𝑋𝑡 + (𝛽 + 𝛾𝑋2
𝑡 )1/2𝜉𝑡+1 (14.4)

This is a special case of (14.3) with 𝜇(𝑥) = 𝛼𝑥 and 𝜎(𝑥) = (𝛽 + 𝛾𝑥2)1/2.
Example 3: With stochastic production and a constant savings rate, the one-sector neoclassical growth model leads to a
law of motion for capital per worker such as

𝑘𝑡+1 = 𝑠𝐴𝑡+1𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 (14.5)

Here
• 𝑠 is the rate of savings
• 𝐴𝑡+1 is a production shock
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– The 𝑡 + 1 subscript indicates that 𝐴𝑡+1 is not visible at time 𝑡
• 𝛿 is a depreciation rate
• 𝑓 ∶ ℝ+ → ℝ+ is a production function satisfying 𝑓(𝑘) > 0 whenever 𝑘 > 0

(The fixed savings rate can be rationalized as the optimal policy for a particular set of technologies and preferences (see
[Ljungqvist and Sargent, 2018], section 3.1.2), although we omit the details here).
Equation (14.5) is a special case of (14.3) with 𝜇(𝑥) = (1 − 𝛿)𝑥 and 𝜎(𝑥) = 𝑠𝑓(𝑥).
Now let’s obtain the stochastic kernel corresponding to the generic model (14.3).
To find it, note first that if 𝑈 is a random variable with density 𝑓𝑈 , and 𝑉 = 𝑎 + 𝑏𝑈 for some constants 𝑎, 𝑏 with 𝑏 > 0,
then the density of 𝑉 is given by

𝑓𝑉 (𝑣) = 1
𝑏 𝑓𝑈 (𝑣 − 𝑎

𝑏 ) (14.6)

(The proof is below. For a multidimensional version see EDTC, theorem 8.1.3).
Taking (14.6) as given for the moment, we can obtain the stochastic kernel 𝑝 for (14.3) by recalling that 𝑝(𝑥, ⋅) is the
conditional density of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.
In the present case, this is equivalent to stating that 𝑝(𝑥, ⋅) is the density of 𝑌 ∶= 𝜇(𝑥) + 𝜎(𝑥) 𝜉𝑡+1 when 𝜉𝑡+1 ∼ 𝜙.
Hence, by (14.6),

𝑝(𝑥, 𝑦) = 1
𝜎(𝑥)𝜙 (𝑦 − 𝜇(𝑥)

𝜎(𝑥) ) (14.7)

For example, the growth model in (14.5) has stochastic kernel

𝑝(𝑥, 𝑦) = 1
𝑠𝑓(𝑥)𝜙 (𝑦 − (1 − 𝛿)𝑥

𝑠𝑓(𝑥) ) (14.8)

where 𝜙 is the density of 𝐴𝑡+1.
(Regarding the state space 𝑆 for this model, a natural choice is (0, ∞) — in which case 𝜎(𝑥) = 𝑠𝑓(𝑥) is strictly positive
for all 𝑠 as required)

14.2.3 Distribution Dynamics

In this section of our lecture on finiteMarkov chains, we asked the following question: If
1. {𝑋𝑡} is a Markov chain with stochastic matrix 𝑃
2. the distribution of 𝑋𝑡 is known to be 𝜓𝑡

then what is the distribution of 𝑋𝑡+1?
Letting 𝜓𝑡+1 denote the distribution of 𝑋𝑡+1, the answer we gave was that

𝜓𝑡+1[𝑗] = ∑
𝑖∈𝑆

𝑃 [𝑖, 𝑗]𝜓𝑡[𝑖]

This intuitive equality states that the probability of being at 𝑗 tomorrow is the probability of visiting 𝑖 today and then going
on to 𝑗, summed over all possible 𝑖.
In the density case, we just replace the sum with an integral and probability mass functions with densities, yielding

𝜓𝑡+1(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓𝑡(𝑥) 𝑑𝑥, ∀𝑦 ∈ 𝑆 (14.9)
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It is convenient to think of this updating process in terms of an operator.
(An operator is just a function, but the term is usually reserved for a function that sends functions into functions)
Let 𝒟 be the set of all densities on 𝑆, and let 𝑃 be the operator from 𝒟 to itself that takes density 𝜓 and sends it into new
density 𝜓𝑃 , where the latter is defined by

(𝜓𝑃)(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓(𝑥)𝑑𝑥 (14.10)

This operator is usually called the Markov operator corresponding to 𝑝

Note: Unlike most operators, we write 𝑃 to the right of its argument, instead of to the left (i.e., 𝜓𝑃 instead of 𝑃𝜓).
This is a common convention, with the intention being to maintain the parallel with the finite case — see here

With this notation, we can write (14.9) more succinctly as 𝜓𝑡+1(𝑦) = (𝜓𝑡𝑃)(𝑦) for all 𝑦, or, dropping the 𝑦 and letting
“=” indicate equality of functions,

𝜓𝑡+1 = 𝜓𝑡𝑃 (14.11)

Equation (14.11) tells us that if we specify a distribution for 𝜓0, then the entire sequence of future distributions can be
obtained by iterating with 𝑃 .
It’s interesting to note that (14.11) is a deterministic difference equation.
Thus, by converting a stochastic difference equation such as (14.3) into a stochastic kernel 𝑝 and hence an operator 𝑃 , we
convert a stochastic difference equation into a deterministic one (albeit in a much higher dimensional space).

Note: Some people might be aware that discrete Markov chains are in fact a special case of the continuous Markov
chains we have just described. The reason is that probability mass functions are densities with respect to the counting
measure.

14.2.4 Computation

To learn about the dynamics of a given process, it’s useful to compute and study the sequences of densities generated by
the model.
One way to do this is to try to implement the iteration described by (14.10) and (14.11) using numerical integration.
However, to produce 𝜓𝑃 from 𝜓 via (14.10), you would need to integrate at every 𝑦, and there is a continuum of such 𝑦.
Another possibility is to discretize the model, but this introduces errors of unknown size.
A nicer alternative in the present setting is to combine simulation with an elegant estimator called the look-ahead estimator.
Let’s go over the ideas with reference to the growth model discussed above, the dynamics of which we repeat here for
convenience:

𝑘𝑡+1 = 𝑠𝐴𝑡+1𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 (14.12)

Our aim is to compute the sequence {𝜓𝑡} associated with this model and fixed initial condition 𝜓0.
To approximate 𝜓𝑡 by simulation, recall that, by definition, 𝜓𝑡 is the density of 𝑘𝑡 given 𝑘0 ∼ 𝜓0.
If we wish to generate observations of this random variable, all we need to do is

1. draw 𝑘0 from the specified initial condition 𝜓0
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2. draw the shocks 𝐴1, … , 𝐴𝑡 from their specified density 𝜙
3. compute 𝑘𝑡 iteratively via (14.12)

If we repeat this 𝑛 times, we get 𝑛 independent observations 𝑘1
𝑡 , … , 𝑘𝑛

𝑡 .
With these draws in hand, the next step is to generate some kind of representation of their distribution 𝜓𝑡.
A naive approach would be to use a histogram, or perhaps a smoothed histogram using SciPy’sgaussian_kde function.
However, in the present setting, there is a much better way to do this, based on the look-ahead estimator.
With this estimator, to construct an estimate of 𝜓𝑡, we actually generate 𝑛 observations of 𝑘𝑡−1, rather than 𝑘𝑡.
Now we take these 𝑛 observations 𝑘1

𝑡−1, … , 𝑘𝑛
𝑡−1 and form the estimate

𝜓𝑛
𝑡 (𝑦) = 1

𝑛
𝑛

∑
𝑖=1

𝑝(𝑘𝑖
𝑡−1, 𝑦) (14.13)

where 𝑝 is the growth model stochastic kernel in (14.8).
What is the justification for this slightly surprising estimator?
The idea is that, by the strong law of large numbers,

1
𝑛

𝑛
∑
𝑖=1

𝑝(𝑘𝑖
𝑡−1, 𝑦) → 𝔼𝑝(𝑘𝑖

𝑡−1, 𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓𝑡−1(𝑥) 𝑑𝑥 = 𝜓𝑡(𝑦)

with probability one as 𝑛 → ∞.
Here the first equality is by the definition of 𝜓𝑡−1, and the second is by (14.9).
We have just shown that our estimator 𝜓𝑛

𝑡 (𝑦) in (14.13) converges almost surely to 𝜓𝑡(𝑦), which is just what we want to
compute.
In fact, much stronger convergence results are true (see, for example, this paper).

14.2.5 Implementation

A class called LAE for estimating densities by this technique can be found in lae.py.
Given our use of the __call__method, an instance of LAE acts as a callable object, which is essentially a function that
can store its own data (see this discussion).
This function returns the right-hand side of (14.13) using

• the data and stochastic kernel that it stores as its instance data
• the value 𝑦 as its argument

The function is vectorized, in the sense that if psi is such an instance and y is an array, then the call psi(y) acts
elementwise.
(This is the reason that we reshaped X and y inside the class — to make vectorization work)
Because the implementation is fully vectorized, it is about as efficient as it would be in C or Fortran.
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14.2.6 Example

The following code is an example of usage for the stochastic growth model described above

# == Define parameters == #
s = 0.2
δ = 0.1
a_σ = 0.4 # A = exp(B) where B ~ N(0, a_σ)
α = 0.4 # We set f(k) = k**α
ψ_0 = beta(5, 5, scale=0.5) # Initial distribution
ϕ = lognorm(a_σ)

def p(x, y):
"""
Stochastic kernel for the growth model with Cobb-Douglas production.
Both x and y must be strictly positive.
"""
d = s * x**α
return ϕ.pdf((y - (1 - δ) * x) / d) / d

n = 10000 # Number of observations at each date t
T = 30 # Compute density of k_t at 1,...,T+1

# == Generate matrix s.t. t-th column is n observations of k_t == #
k = np.empty((n, T))
A = ϕ.rvs((n, T))
k[:, 0] = ψ_0.rvs(n) # Draw first column from initial distribution
for t in range(T-1):

k[:, t+1] = s * A[:, t] * k[:, t]**α + (1 - δ) * k[:, t]

# == Generate T instances of LAE using this data, one for each date t == #
laes = [LAE(p, k[:, t]) for t in range(T)]

# == Plot == #
fig, ax = plt.subplots()
ygrid = np.linspace(0.01, 4.0, 200)
greys = [str(g) for g in np.linspace(0.0, 0.8, T)]
greys.reverse()
for ψ, g in zip(laes, greys):

ax.plot(ygrid, ψ(ygrid), color=g, lw=2, alpha=0.6)
ax.set_xlabel('capital')
ax.set_title(f'Density of $k_1$ (lighter) to $k_T$ (darker) for $T={T}$')
plt.show()
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The figure shows part of the density sequence {𝜓𝑡}, with each density computed via the look-ahead estimator.
Notice that the sequence of densities shown in the figure seems to be converging — more on this in just a moment.
Another quick comment is that each of these distributions could be interpreted as a cross-sectional distribution (recall
this discussion).

14.3 Beyond Densities

Up until now, we have focused exclusively on continuous state Markov chains where all conditional distributions 𝑝(𝑥, ⋅)
are densities.
As discussed above, not all distributions can be represented as densities.
If the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥 cannot be represented as a density for some 𝑥 ∈ 𝑆, then we need
a slightly different theory.
The ultimate option is to switch from densities to probability measures, but not all readers will be familiar with measure
theory.
We can, however, construct a fairly general theory using distribution functions.
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14.3.1 Example and Definitions

To illustrate the issues, recall that Hopenhayn and Rogerson [Hopenhayn and Rogerson, 1993] study a model of firm
dynamics where individual firm productivity follows the exogenous process

𝑋𝑡+1 = 𝑎 + 𝜌𝑋𝑡 + 𝜉𝑡+1, where {𝜉𝑡}
IID∼ 𝑁(0, 𝜎2)

As is, this fits into the density case we treated above.
However, the authors wanted this process to take values in [0, 1], so they added boundaries at the endpoints 0 and 1.
One way to write this is

𝑋𝑡+1 = ℎ(𝑎 + 𝜌𝑋𝑡 + 𝜉𝑡+1) where ℎ(𝑥) ∶= 𝑥 1{0 ≤ 𝑥 ≤ 1} + 1{𝑥 > 1}

If you think about it, you will see that for any given 𝑥 ∈ [0, 1], the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥 puts
positive probability mass on 0 and 1.
Hence it cannot be represented as a density.
What we can do instead is use cumulative distribution functions (cdfs).
To this end, set

𝐺(𝑥, 𝑦) ∶= ℙ{ℎ(𝑎 + 𝜌𝑥 + 𝜉𝑡+1) ≤ 𝑦} (0 ≤ 𝑥, 𝑦 ≤ 1)

This family of cdfs 𝐺(𝑥, ⋅) plays a role analogous to the stochastic kernel in the density case.
The distribution dynamics in (14.9) are then replaced by

𝐹𝑡+1(𝑦) = ∫ 𝐺(𝑥, 𝑦)𝐹𝑡(𝑑𝑥) (14.14)

Here 𝐹𝑡 and 𝐹𝑡+1 are cdfs representing the distribution of the current state and next period state.
The intuition behind (14.14) is essentially the same as for (14.9).

14.3.2 Computation

If you wish to compute these cdfs, you cannot use the look-ahead estimator as before.
Indeed, you should not use any density estimator, since the objects you are estimating/computing are not densities.
One good option is simulation as before, combined with the empirical distribution function.

14.4 Stability

In our lecture on finite Markov chains, we also studied stationarity, stability and ergodicity.
Here we will cover the same topics for the continuous case.
We will, however, treat only the density case (as in this section), where the stochastic kernel is a family of densities.
The general case is relatively similar — references are given below.
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14.4.1 Theoretical Results

Analogous to the finite case, given a stochastic kernel 𝑝 and corresponding Markov operator as defined in (14.10), a
density 𝜓∗ on 𝑆 is called stationary for 𝑃 if it is a fixed point of the operator 𝑃 .
In other words,

𝜓∗(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓∗(𝑥) 𝑑𝑥, ∀𝑦 ∈ 𝑆 (14.15)

As with the finite case, if 𝜓∗ is stationary for 𝑃 , and the distribution of 𝑋0 is 𝜓∗, then, in view of (14.11), 𝑋𝑡 will have
this same distribution for all 𝑡.
Hence 𝜓∗ is the stochastic equivalent of a steady state.
In the finite case, we learned that at least one stationary distribution exists, although there may be many.
When the state space is infinite, the situation is more complicated.
Even existence can fail very easily.
For example, the random walk model has no stationary density (see, e.g., EDTC, p. 210).
However, there are well-known conditions under which a stationary density 𝜓∗ exists.
With additional conditions, we can also get a unique stationary density (𝜓 ∈ 𝒟 and 𝜓 = 𝜓𝑃 ⟹ 𝜓 = 𝜓∗), and also
global convergence in the sense that

∀ 𝜓 ∈ 𝒟, 𝜓𝑃 𝑡 → 𝜓∗ as 𝑡 → ∞ (14.16)

This combination of existence, uniqueness and global convergence in the sense of (14.16) is often referred to as global
stability.
Under very similar conditions, we get ergodicity, which means that

1
𝑛

𝑛
∑
𝑡=1

ℎ(𝑋𝑡) → ∫ ℎ(𝑥)𝜓∗(𝑥)𝑑𝑥 as 𝑛 → ∞ (14.17)

for any (measurable) function ℎ∶ 𝑆 → ℝ such that the right-hand side is finite.
Note that the convergence in (14.17) does not depend on the distribution (or value) of 𝑋0.
This is actually very important for simulation — it means we can learn about 𝜓∗ (i.e., approximate the right-hand side of
(14.17) via the left-hand side) without requiring any special knowledge about what to do with 𝑋0.
So what are these conditions we require to get global stability and ergodicity?
In essence, it must be the case that

1. Probability mass does not drift off to the “edges” of the state space.
2. Sufficient “mixing” obtains.

For one such set of conditions see theorem 8.2.14 of EDTC.
In addition

• [Stokey et al., 1989] contains a classic (but slightly outdated) treatment of these topics.
• From the mathematical literature, [Lasota and MacKey, 1994] and [Meyn and Tweedie, 2009] give outstanding
in-depth treatments.

• Section 8.1.2 of EDTC provides detailed intuition, and section 8.3 gives additional references.
• EDTC, section 11.3.4 provides a specific treatment for the growth model we considered in this lecture.
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14.4.2 An Example of Stability

As stated above, the growth model treated here is stable under mild conditions on the primitives.
• See EDTC, section 11.3.4 for more details.

We can see this stability in action — in particular, the convergence in (14.16) — by simulating the path of densities from
various initial conditions.
Here is such a figure.

All sequences are converging towards the same limit, regardless of their initial condition.
The details regarding initial conditions and so on are given in this exercise, where you are asked to replicate the figure.

14.4.3 Computing Stationary Densities

In the preceding figure, each sequence of densities is converging towards the unique stationary density 𝜓∗.
Even from this figure, we can get a fair idea what 𝜓∗ looks like, and where its mass is located.
However, there is a much more direct way to estimate the stationary density, and it involves only a slight modification of
the look-ahead estimator.
Let’s say that we have a model of the form (14.3) that is stable and ergodic.
Let 𝑝 be the corresponding stochastic kernel, as given in (14.7).
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To approximate the stationary density 𝜓∗, we can simply generate a long time-series 𝑋0, 𝑋1, … , 𝑋𝑛 and estimate 𝜓∗ via

𝜓∗
𝑛(𝑦) = 1

𝑛
𝑛

∑
𝑡=1

𝑝(𝑋𝑡, 𝑦) (14.18)

This is essentially the same as the look-ahead estimator (14.13), except that now the observations we generate are a single
time-series, rather than a cross-section.
The justification for (14.18) is that, with probability one as 𝑛 → ∞,

1
𝑛

𝑛
∑
𝑡=1

𝑝(𝑋𝑡, 𝑦) → ∫ 𝑝(𝑥, 𝑦)𝜓∗(𝑥) 𝑑𝑥 = 𝜓∗(𝑦)

where the convergence is by (14.17) and the equality on the right is by (14.15).
The right-hand side is exactly what we want to compute.
On top of this asymptotic result, it turns out that the rate of convergence for the look-ahead estimator is very good.
The first exercise helps illustrate this point.

14.5 Exercises

Exercise 14.5.1
Consider the simple threshold autoregressive model

𝑋𝑡+1 = 𝜃|𝑋𝑡| + (1 − 𝜃2)1/2𝜉𝑡+1 where {𝜉𝑡}
IID∼ 𝑁(0, 1) (14.19)

This is one of those rare nonlinear stochastic models where an analytical expression for the stationary density is available.
In particular, provided that |𝜃| < 1, there is a unique stationary density 𝜓∗ given by

𝜓∗(𝑦) = 2 𝜙(𝑦) Φ [ 𝜃𝑦
(1 − 𝜃2)1/2 ] (14.20)

Here 𝜙 is the standard normal density and Φ is the standard normal cdf.
As an exercise, compute the look-ahead estimate of 𝜓∗, as defined in (14.18), and compare it with 𝜓∗ in (14.20) to see
whether they are indeed close for large 𝑛.
In doing so, set 𝜃 = 0.8 and 𝑛 = 500.
The next figure shows the result of such a computation
The additional density (black line) is a nonparametric kernel density estimate, added to the solution for illustration.
(You can try to replicate it before looking at the solution if you want to)
As you can see, the look-ahead estimator is a much tighter fit than the kernel density estimator.
If you repeat the simulation you will see that this is consistently the case.

Solution to Exercise 14.5.1
Look-ahead estimation of a TAR stationary density, where the TAR model is

𝑋𝑡+1 = 𝜃|𝑋𝑡| + (1 − 𝜃2)1/2𝜉𝑡+1
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and 𝜉𝑡 ∼ 𝑁(0, 1).
Try running at n = 10, 100, 1000, 10000 to get an idea of the speed of convergence

ϕ = norm()
n = 500
θ = 0.8
# == Frequently used constants == #
d = np.sqrt(1 - θ**2)
δ = θ / d

def ψ_star(y):
"True stationary density of the TAR Model"
return 2 * norm.pdf(y) * norm.cdf(δ * y)

def p(x, y):
"Stochastic kernel for the TAR model."
return ϕ.pdf((y - θ * np.abs(x)) / d) / d

Z = ϕ.rvs(n)
X = np.empty(n)
for t in range(n-1):

X[t+1] = θ * np.abs(X[t]) + d * Z[t]
ψ_est = LAE(p, X)
k_est = gaussian_kde(X)

fig, ax = plt.subplots(figsize=(10, 7))
ys = np.linspace(-3, 3, 200)
ax.plot(ys, ψ_star(ys), 'b-', lw=2, alpha=0.6, label='true')
ax.plot(ys, ψ_est(ys), 'g-', lw=2, alpha=0.6, label='look-ahead estimate')
ax.plot(ys, k_est(ys), 'k-', lw=2, alpha=0.6, label='kernel based estimate')
ax.legend(loc='upper left')
plt.show()
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Exercise 14.5.2
Replicate the figure on global convergence shown above.
The densities come from the stochastic growth model treated at the start of the lecture.
Begin with the code found above.
Use the same parameters.
For the four initial distributions, use the shifted beta distributions

ψ_0 = beta(5, 5, scale=0.5, loc=i*2)

Solution to Exercise 14.5.2
Here’s one program that does the job

# == Define parameters == #
s = 0.2
δ = 0.1
a_σ = 0.4 # A = exp(B) where B ~ N(0, a_σ)
α = 0.4 # f(k) = k**α

ϕ = lognorm(a_σ)

(continues on next page)
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(continued from previous page)

def p(x, y):
"Stochastic kernel, vectorized in x. Both x and y must be positive."
d = s * x**α
return ϕ.pdf((y - (1 - δ) * x) / d) / d

n = 1000 # Number of observations at each date t
T = 40 # Compute density of k_t at 1,...,T

fig, axes = plt.subplots(2, 2, figsize=(11, 8))
axes = axes.flatten()
xmax = 6.5

for i in range(4):
ax = axes[i]
ax.set_xlim(0, xmax)
ψ_0 = beta(5, 5, scale=0.5, loc=i*2) # Initial distribution

# == Generate matrix s.t. t-th column is n observations of k_t == #
k = np.empty((n, T))
A = ϕ.rvs((n, T))
k[:, 0] = ψ_0.rvs(n)
for t in range(T-1):

k[:, t+1] = s * A[:,t] * k[:, t]**α + (1 - δ) * k[:, t]

# == Generate T instances of lae using this data, one for each t == #
laes = [LAE(p, k[:, t]) for t in range(T)]

ygrid = np.linspace(0.01, xmax, 150)
greys = [str(g) for g in np.linspace(0.0, 0.8, T)]
greys.reverse()
for ψ, g in zip(laes, greys):

ax.plot(ygrid, ψ(ygrid), color=g, lw=2, alpha=0.6)
ax.set_xlabel('capital')

plt.show()
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Exercise 14.5.3
A common way to compare distributions visually is with boxplots.
To illustrate, let’s generate three artificial data sets and compare them with a boxplot.
The three data sets we will use are:

{𝑋1, … , 𝑋𝑛} ∼ 𝐿𝑁(0, 1), {𝑌1, … , 𝑌𝑛} ∼ 𝑁(2, 1), and {𝑍1, … , 𝑍𝑛} ∼ 𝑁(4, 1),

Here is the code and figure:

n = 500
x = np.random.randn(n) # N(0, 1)
x = np.exp(x) # Map x to lognormal
y = np.random.randn(n) + 2.0 # N(2, 1)
z = np.random.randn(n) + 4.0 # N(4, 1)

fig, ax = plt.subplots(figsize=(10, 6.6))
ax.boxplot([x, y, z])
ax.set_xticks((1, 2, 3))
ax.set_ylim(-2, 14)
ax.set_xticklabels(('$X$', '$Y$', '$Z$'), fontsize=16)
plt.show()
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Each data set is represented by a box, where the top and bottom of the box are the third and first quartiles of the data,
and the red line in the center is the median.
The boxes give some indication as to

• the location of probability mass for each sample
• whether the distribution is right-skewed (as is the lognormal distribution), etc

Now let’s put these ideas to use in a simulation.
Consider the threshold autoregressive model in (14.19).
We know that the distribution of 𝑋𝑡 will converge to (14.20) whenever |𝜃| < 1.
Let’s observe this convergence from different initial conditions using boxplots.
In particular, the exercise is to generate J boxplot figures, one for each initial condition 𝑋0 in

initial_conditions = np.linspace(8, 0, J)

For each 𝑋0 in this set,
1. Generate 𝑘 time-series of length 𝑛, each starting at 𝑋0 and obeying (14.19).
2. Create a boxplot representing 𝑛 distributions, where the 𝑡-th distribution shows the 𝑘 observations of 𝑋𝑡.

Use 𝜃 = 0.9, 𝑛 = 20, 𝑘 = 5000, 𝐽 = 8

Solution to Exercise 14.5.3
Here’s a possible solution.
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Note the way we use vectorized code to simulate the 𝑘 time series for one boxplot all at once

n = 20
k = 5000
J = 8

θ = 0.9
d = np.sqrt(1 - θ**2)
δ = θ / d

fig, axes = plt.subplots(J, 1, figsize=(10, 4*J))
initial_conditions = np.linspace(8, 0, J)
X = np.empty((k, n))

for j in range(J):

axes[j].set_ylim(-4, 8)
axes[j].set_title(f'time series from t = {initial_conditions[j]}')

Z = np.random.randn(k, n)
X[:, 0] = initial_conditions[j]
for t in range(1, n):

X[:, t] = θ * np.abs(X[:, t-1]) + d * Z[:, t]
axes[j].boxplot(X)

plt.show()
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14.6 Appendix

Here’s the proof of (14.6).
Let 𝐹𝑈 and 𝐹𝑉 be the cumulative distributions of 𝑈 and 𝑉 respectively.
By the definition of 𝑉 , we have 𝐹𝑉 (𝑣) = ℙ{𝑎 + 𝑏𝑈 ≤ 𝑣} = ℙ{𝑈 ≤ (𝑣 − 𝑎)/𝑏}.
In other words, 𝐹𝑉 (𝑣) = 𝐹𝑈((𝑣 − 𝑎)/𝑏).
Differentiating with respect to 𝑣 yields (14.6).
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CHAPTER

FIFTEEN

COVARIANCE STATIONARY PROCESSES

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

15.1 Overview

In this lecture we study covariance stationary linear stochastic processes, a class ofmodels routinely used to study economic
and financial time series.
This class has the advantage of being

1. simple enough to be described by an elegant and comprehensive theory
2. relatively broad in terms of the kinds of dynamics it can represent

We consider these models in both the time and frequency domain.

15.1.1 ARMA Processes

We will focus much of our attention on linear covariance stationary models with a finite number of parameters.
In particular, we will study stationary ARMA processes, which form a cornerstone of the standard theory of time series
analysis.
Every ARMA process can be represented in linear state space form.
However, ARMA processes have some important structure that makes it valuable to study them separately.

15.1.2 Spectral Analysis

Analysis in the frequency domain is also called spectral analysis.
In essence, spectral analysis provides an alternative representation of the autocovariance function of a covariance stationary
process.
Having a second representation of this important object

• shines a light on the dynamics of the process in question
• allows for a simpler, more tractable representation in some important cases

The famous Fourier transform and its inverse are used to map between the two representations.
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15.1.3 Other Reading

For supplementary reading, see
• [Ljungqvist and Sargent, 2018], chapter 2
• [Sargent, 1987], chapter 11
• John Cochrane’s notes on time series analysis, chapter 8
• [Shiriaev, 1995], chapter 6
• [Cryer and Chan, 2008], all

Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
import quantecon as qe

15.2 Introduction

Consider a sequence of random variables {𝑋𝑡} indexed by 𝑡 ∈ ℤ and taking values in ℝ.
Thus, {𝑋𝑡} begins in the infinite past and extends to the infinite future — a convenient and standard assumption.
As in other fields, successful economic modeling typically assumes the existence of features that are constant over time.
If these assumptions are correct, then each new observation 𝑋𝑡, 𝑋𝑡+1, … can provide additional information about the
time-invariant features, allowing us to learn from as data arrive.
For this reason, we will focus in what follows on processes that are stationary—or become so after a transformation (see
for example this lecture).

15.2.1 Definitions

A real-valued stochastic process {𝑋𝑡} is called covariance stationary if
1. Its mean 𝜇 ∶= 𝔼𝑋𝑡 does not depend on 𝑡.
2. For all 𝑘 in ℤ, the 𝑘-th autocovariance 𝛾(𝑘) ∶= 𝔼(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑘 − 𝜇) is finite and depends only on 𝑘.

The function 𝛾 ∶ ℤ → ℝ is called the autocovariance function of the process.
Throughout this lecture, we will work exclusively with zero-mean (i.e., 𝜇 = 0) covariance stationary processes.
The zero-mean assumption costs nothing in terms of generality since working with non-zero-mean processes involves no
more than adding a constant.
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15.2.2 Example 1: White Noise

Perhaps the simplest class of covariance stationary processes is the white noise processes.
A process {𝜖𝑡} is called a white noise process if

1. 𝔼𝜖𝑡 = 0
2. 𝛾(𝑘) = 𝜎21{𝑘 = 0} for some 𝜎 > 0

(Here 1{𝑘 = 0} is defined to be 1 if 𝑘 = 0 and zero otherwise)
White noise processes play the role of building blocks for processes with more complicated dynamics.

15.2.3 Example 2: General Linear Processes

From the simple building block provided by white noise, we can construct a very flexible family of covariance stationary
processes — the general linear processes

𝑋𝑡 =
∞

∑
𝑗=0

𝜓𝑗𝜖𝑡−𝑗, 𝑡 ∈ ℤ (15.1)

where
• {𝜖𝑡} is white noise
• {𝜓𝑡} is a square summable sequence in ℝ (that is, ∑∞

𝑡=0 𝜓2
𝑡 < ∞)

The sequence {𝜓𝑡} is often called a linear filter.
Equation (15.1) is said to present a moving average process or a moving average representation.
With some manipulations, it is possible to confirm that the autocovariance function for (15.1) is

𝛾(𝑘) = 𝜎2
∞

∑
𝑗=0

𝜓𝑗𝜓𝑗+𝑘 (15.2)

By the Cauchy-Schwartz inequality, one can show that 𝛾(𝑘) satisfies equation (15.2).
Evidently, 𝛾(𝑘) does not depend on 𝑡.

15.2.4 Wold Representation

Remarkably, the class of general linear processes goes a long way towards describing the entire class of zero-mean co-
variance stationary processes.
In particular, Wold’s decomposition theorem states that every zero-mean covariance stationary process {𝑋𝑡} can be
written as

𝑋𝑡 =
∞

∑
𝑗=0

𝜓𝑗𝜖𝑡−𝑗 + 𝜂𝑡

where
• {𝜖𝑡} is white noise
• {𝜓𝑡} is square summable
• 𝜓0𝜖𝑡 is the one-step ahead prediction error in forecasting𝑋𝑡 as a linear least-squares function of the infinite history

𝑋𝑡−1, 𝑋𝑡−2, …
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• 𝜂𝑡 can be expressed as a linear function of𝑋𝑡−1, 𝑋𝑡−2, … and is perfectly predictable over arbitrarily long horizons
For the method of constructing a Wold representation, intuition, and further discussion, see [Sargent, 1987], p. 286.

15.2.5 AR and MA

General linear processes are a very broad class of processes.
It often pays to specialize to those for which there exists a representation having only finitely many parameters.
(Experience and theory combine to indicate that models with a relatively small number of parameters typically perform
better than larger models, especially for forecasting)
One very simple example of such a model is the first-order autoregressive or AR(1) process

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜖𝑡 where |𝜙| < 1 and {𝜖𝑡} is white noise (15.3)

By direct substitution, it is easy to verify that 𝑋𝑡 = ∑∞
𝑗=0 𝜙𝑗𝜖𝑡−𝑗.

Hence {𝑋𝑡} is a general linear process.
Applying (15.2) to the previous expression for 𝑋𝑡, we get the AR(1) autocovariance function

𝛾(𝑘) = 𝜙𝑘 𝜎2

1 − 𝜙2 , 𝑘 = 0, 1, … (15.4)

The next figure plots an example of this function for 𝜙 = 0.8 and 𝜙 = −0.8 with 𝜎 = 1.

num_rows, num_cols = 2, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.4)

for i, ϕ in enumerate((0.8, -0.8)):
ax = axes[i]
times = list(range(16))
acov = [ϕ**k / (1 - ϕ**2) for k in times]
ax.plot(times, acov, 'bo-', alpha=0.6,

label=f'autocovariance, $\phi = {ϕ:.2}$')
ax.legend(loc='upper right')
ax.set(xlabel='time', xlim=(0, 15))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

plt.show()
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Another very simple process is the MA(1) process (here MA means “moving average”)

𝑋𝑡 = 𝜖𝑡 + 𝜃𝜖𝑡−1

You will be able to verify that

𝛾(0) = 𝜎2(1 + 𝜃2), 𝛾(1) = 𝜎2𝜃, and 𝛾(𝑘) = 0 ∀ 𝑘 > 1

The AR(1) can be generalized to an AR(𝑝) and likewise for the MA(1).
Putting all of this together, we get the

15.2.6 ARMA Processes

A stochastic process {𝑋𝑡} is called an autoregressive moving average process, or ARMA(𝑝, 𝑞), if it can be written as

𝑋𝑡 = 𝜙1𝑋𝑡−1 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 (15.5)

where {𝜖𝑡} is white noise.
An alternative notation for ARMA processes uses the lag operator 𝐿.
Def. Given arbitrary variable 𝑌𝑡, let 𝐿𝑘𝑌𝑡 ∶= 𝑌𝑡−𝑘.
It turns out that
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• lag operators facilitate succinct representations for linear stochastic processes
• algebraic manipulations that treat the lag operator as an ordinary scalar are legitimate

Using 𝐿, we can rewrite (15.5) as

𝐿0𝑋𝑡 − 𝜙1𝐿1𝑋𝑡 − ⋯ − 𝜙𝑝𝐿𝑝𝑋𝑡 = 𝐿0𝜖𝑡 + 𝜃1𝐿1𝜖𝑡 + ⋯ + 𝜃𝑞𝐿𝑞𝜖𝑡 (15.6)

If we let 𝜙(𝑧) and 𝜃(𝑧) be the polynomials

𝜙(𝑧) ∶= 1 − 𝜙1𝑧 − ⋯ − 𝜙𝑝𝑧𝑝 and 𝜃(𝑧) ∶= 1 + 𝜃1𝑧 + ⋯ + 𝜃𝑞𝑧𝑞 (15.7)

then (15.6) becomes

𝜙(𝐿)𝑋𝑡 = 𝜃(𝐿)𝜖𝑡 (15.8)

In what follows we always assume that the roots of the polynomial 𝜙(𝑧) lie outside the unit circle in the complex plane.
This condition is sufficient to guarantee that the ARMA(𝑝, 𝑞) process is covariance stationary.
In fact, it implies that the process falls within the class of general linear processes described above.
That is, given an ARMA(𝑝, 𝑞) process {𝑋𝑡} satisfying the unit circle condition, there exists a square summable sequence
{𝜓𝑡} with 𝑋𝑡 = ∑∞

𝑗=0 𝜓𝑗𝜖𝑡−𝑗 for all 𝑡.
The sequence {𝜓𝑡} can be obtained by a recursive procedure outlined on page 79 of [Cryer and Chan, 2008].
The function 𝑡 ↦ 𝜓𝑡 is often called the impulse response function.

15.3 Spectral Analysis

Autocovariance functions provide a great deal of information about covariance stationary processes.
In fact, for zero-mean Gaussian processes, the autocovariance function characterizes the entire joint distribution.
Even for non-Gaussian processes, it provides a significant amount of information.
It turns out that there is an alternative representation of the autocovariance function of a covariance stationary process,
called the spectral density.
At times, the spectral density is easier to derive, easier to manipulate, and provides additional intuition.

15.3.1 Complex Numbers

Before discussing the spectral density, we invite you to recall the main properties of complex numbers (or skip to the next
section).
It can be helpful to remember that, in a formal sense, complex numbers are just points (𝑥, 𝑦) ∈ ℝ2 endowed with a
specific notion of multiplication.
When (𝑥, 𝑦) is regarded as a complex number, 𝑥 is called the real part and 𝑦 is called the imaginary part.
The modulus or absolute value of a complex number 𝑧 = (𝑥, 𝑦) is just its Euclidean norm in ℝ2, but is usually written as
|𝑧| instead of ‖𝑧‖.
The product of two complex numbers (𝑥, 𝑦) and (𝑢, 𝑣) is defined to be (𝑥𝑢 − 𝑣𝑦, 𝑥𝑣 + 𝑦𝑢), while addition is standard
pointwise vector addition.
When endowed with these notions of multiplication and addition, the set of complex numbers forms a field — addition
and multiplication play well together, just as they do in ℝ.
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The complex number (𝑥, 𝑦) is often written as 𝑥 + 𝑖𝑦, where 𝑖 is called the imaginary unit and is understood to obey
𝑖2 = −1.
The 𝑥 + 𝑖𝑦 notation provides an easy way to remember the definition of multiplication given above, because, proceeding
naively,

(𝑥 + 𝑖𝑦)(𝑢 + 𝑖𝑣) = 𝑥𝑢 − 𝑦𝑣 + 𝑖(𝑥𝑣 + 𝑦𝑢)

Converted back to our first notation, this becomes (𝑥𝑢 − 𝑣𝑦, 𝑥𝑣 + 𝑦𝑢) as promised.
Complex numbers can be represented in the polar form 𝑟𝑒𝑖𝜔 where

𝑟𝑒𝑖𝜔 ∶= 𝑟(cos(𝜔) + 𝑖 sin(𝜔)) = 𝑥 + 𝑖𝑦

where 𝑥 = 𝑟 cos(𝜔), 𝑦 = 𝑟 sin(𝜔), and 𝜔 = arctan(𝑦/𝑧) or tan(𝜔) = 𝑦/𝑥.

15.3.2 Spectral Densities

Let {𝑋𝑡} be a covariance stationary process with autocovariance function 𝛾 satisfying ∑𝑘 𝛾(𝑘)2 < ∞.
The spectral density 𝑓 of {𝑋𝑡} is defined as the discrete time Fourier transform of its autocovariance function 𝛾.

𝑓(𝜔) ∶= ∑
𝑘∈ℤ

𝛾(𝑘)𝑒−𝑖𝜔𝑘, 𝜔 ∈ ℝ

(Some authors normalize the expression on the right by constants such as 1/𝜋 — the convention chosen makes little
difference provided you are consistent).
Using the fact that 𝛾 is even, in the sense that 𝛾(𝑡) = 𝛾(−𝑡) for all 𝑡, we can show that

𝑓(𝜔) = 𝛾(0) + 2 ∑
𝑘≥1

𝛾(𝑘) cos(𝜔𝑘) (15.9)

It is not difficult to confirm that 𝑓 is
• real-valued
• even (𝑓(𝜔) = 𝑓(−𝜔) ), and
• 2𝜋-periodic, in the sense that 𝑓(2𝜋 + 𝜔) = 𝑓(𝜔) for all 𝜔

It follows that the values of 𝑓 on [0, 𝜋] determine the values of 𝑓 on all of ℝ — the proof is an exercise.
For this reason, it is standard to plot the spectral density only on the interval [0, 𝜋].

15.3.3 Example 1: White Noise

Consider a white noise process {𝜖𝑡} with standard deviation 𝜎.
It is easy to check that in this case 𝑓(𝜔) = 𝜎2. So 𝑓 is a constant function.
As we will see, this can be interpreted as meaning that “all frequencies are equally present”.
(White light has this property when frequency refers to the visible spectrum, a connection that provides the origins of the
term “white noise”)
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15.3.4 Example 2: AR and MA and ARMA

It is an exercise to show that the MA(1) process 𝑋𝑡 = 𝜃𝜖𝑡−1 + 𝜖𝑡 has a spectral density

𝑓(𝜔) = 𝜎2(1 + 2𝜃 cos(𝜔) + 𝜃2) (15.10)

With a bit more effort, it’s possible to show (see, e.g., p. 261 of [Sargent, 1987]) that the spectral density of the AR(1)
process 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜖𝑡 is

𝑓(𝜔) = 𝜎2

1 − 2𝜙 cos(𝜔) + 𝜙2 (15.11)

More generally, it can be shown that the spectral density of the ARMA process (15.5) is

𝑓(𝜔) = ∣ 𝜃(𝑒𝑖𝜔)
𝜙(𝑒𝑖𝜔) ∣

2
𝜎2 (15.12)

where
• 𝜎 is the standard deviation of the white noise process {𝜖𝑡}.
• the polynomials 𝜙(⋅) and 𝜃(⋅) are as defined in (15.7).

The derivation of (15.12) uses the fact that convolutions become products under Fourier transformations.
The proof is elegant and can be found in many places — see, for example, [Sargent, 1987], chapter 11, section 4.
It’s a nice exercise to verify that (15.10) and (15.11) are indeed special cases of (15.12).

15.3.5 Interpreting the Spectral Density

Plotting (15.11) reveals the shape of the spectral density for the AR(1) model when 𝜙 takes the values 0.8 and -0.8
respectively.

def ar1_sd(ϕ, ω):
return 1 / (1 - 2 * ϕ * np.cos(ω) + ϕ**2)

ωs = np.linspace(0, np.pi, 180)
num_rows, num_cols = 2, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.4)

# Autocovariance when phi = 0.8
for i, ϕ in enumerate((0.8, -0.8)):

ax = axes[i]
sd = ar1_sd(ϕ, ωs)
ax.plot(ωs, sd, 'b-', alpha=0.6, lw=2,

label='spectral density, $\phi = {ϕ:.2}$')
ax.legend(loc='upper center')
ax.set(xlabel='frequency', xlim=(0, np.pi))

plt.show()
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These spectral densities correspond to the autocovariance functions for the AR(1) process shown above.
Informally, we think of the spectral density as being large at those 𝜔 ∈ [0, 𝜋] at which the autocovariance function seems
approximately to exhibit big damped cycles.
To see the idea, let’s consider why, in the lower panel of the preceding figure, the spectral density for the case 𝜙 = −0.8
is large at 𝜔 = 𝜋.
Recall that the spectral density can be expressed as

𝑓(𝜔) = 𝛾(0) + 2 ∑
𝑘≥1

𝛾(𝑘) cos(𝜔𝑘) = 𝛾(0) + 2 ∑
𝑘≥1

(−0.8)𝑘 cos(𝜔𝑘) (15.13)

When we evaluate this at 𝜔 = 𝜋, we get a large number because cos(𝜋𝑘) is large and positive when (−0.8)𝑘 is positive,
and large in absolute value and negative when (−0.8)𝑘 is negative.
Hence the product is always large and positive, and hence the sum of the products on the right-hand side of (15.13) is
large.
These ideas are illustrated in the next figure, which has 𝑘 on the horizontal axis.

ϕ = -0.8
times = list(range(16))
y1 = [ϕ**k / (1 - ϕ**2) for k in times]
y2 = [np.cos(np.pi * k) for k in times]

(continues on next page)
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(continued from previous page)

y3 = [a * b for a, b in zip(y1, y2)]

num_rows, num_cols = 3, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.25)

# Autocovariance when ϕ = -0.8
ax = axes[0]
ax.plot(times, y1, 'bo-', alpha=0.6, label='$\gamma(k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-2, 0, 2))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

# Cycles at frequency π
ax = axes[1]
ax.plot(times, y2, 'bo-', alpha=0.6, label='$\cos(\pi k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-1, 0, 1))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

# Product
ax = axes[2]
ax.stem(times, y3, label='$\gamma(k) \cos(\pi k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), ylim=(-3, 3), yticks=(-1, 0, 1, 2, 3))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)
ax.set_xlabel("k")

plt.show()

282 Chapter 15. Covariance Stationary Processes



Tools and Techniques for Computational Economics

On the other hand, if we evaluate 𝑓(𝜔) at 𝜔 = 𝜋/3, then the cycles are not matched, the sequence 𝛾(𝑘) cos(𝜔𝑘) contains
both positive and negative terms, and hence the sum of these terms is much smaller.

ϕ = -0.8
times = list(range(16))
y1 = [ϕ**k / (1 - ϕ**2) for k in times]
y2 = [np.cos(np.pi * k/3) for k in times]
y3 = [a * b for a, b in zip(y1, y2)]

num_rows, num_cols = 3, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.25)

# Autocovariance when phi = -0.8
ax = axes[0]
ax.plot(times, y1, 'bo-', alpha=0.6, label='$\gamma(k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-2, 0, 2))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

# Cycles at frequency π
ax = axes[1]
ax.plot(times, y2, 'bo-', alpha=0.6, label='$\cos(\pi k/3)$')

(continues on next page)
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ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-1, 0, 1))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

# Product
ax = axes[2]
ax.stem(times, y3, label='$\gamma(k) \cos(\pi k/3)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), ylim=(-3, 3), yticks=(-1, 0, 1, 2, 3))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)
ax.set_xlabel("$k$")

plt.show()

In summary, the spectral density is large at frequencies 𝜔 where the autocovariance function exhibits damped cycles.
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15.3.6 Inverting the Transformation

We have just seen that the spectral density is useful in the sense that it provides a frequency-based perspective on the
autocovariance structure of a covariance stationary process.
Another reason that the spectral density is useful is that it can be “inverted” to recover the autocovariance function via the
inverse Fourier transform.
In particular, for all 𝑘 ∈ ℤ, we have

𝛾(𝑘) = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝜔)𝑒𝑖𝜔𝑘𝑑𝜔 (15.14)

This is convenient in situations where the spectral density is easier to calculate and manipulate than the autocovariance
function.
(For example, the expression (15.12) for the ARMA spectral density is much easier to work with than the expression for
the ARMA autocovariance)

15.3.7 Mathematical Theory

This section is loosely based on [Sargent, 1987], p. 249-253, and included for those who
• would like a bit more insight into spectral densities
• and have at least some background in Hilbert space theory

Others should feel free to skip to the next section— none of this material is necessary to progress to computation.
Recall that every separable Hilbert space 𝐻 has a countable orthonormal basis {ℎ𝑘}.
The nice thing about such a basis is that every 𝑓 ∈ 𝐻 satisfies

𝑓 = ∑
𝑘

𝛼𝑘ℎ𝑘 where 𝛼𝑘 ∶= ⟨𝑓, ℎ𝑘⟩ (15.15)

where ⟨⋅, ⋅⟩ denotes the inner product in 𝐻 .
Thus, 𝑓 can be represented to any degree of precision by linearly combining basis vectors.
The scalar sequence 𝛼 = {𝛼𝑘} is called the Fourier coefficients of 𝑓 , and satisfies ∑𝑘 |𝛼𝑘|2 < ∞.
In other words, 𝛼 is in ℓ2, the set of square summable sequences.
Consider an operator 𝑇 that maps 𝛼 ∈ ℓ2 into its expansion ∑𝑘 𝛼𝑘ℎ𝑘 ∈ 𝐻 .
The Fourier coefficients of 𝑇 𝛼 are just 𝛼 = {𝛼𝑘}, as you can verify by confirming that ⟨𝑇 𝛼, ℎ𝑘⟩ = 𝛼𝑘.
Using elementary results from Hilbert space theory, it can be shown that

• 𝑇 is one-to-one — if 𝛼 and 𝛽 are distinct in ℓ2, then so are their expansions in 𝐻 .
• 𝑇 is onto — if 𝑓 ∈ 𝐻 then its preimage in ℓ2 is the sequence 𝛼 given by 𝛼𝑘 = ⟨𝑓, ℎ𝑘⟩.
• 𝑇 is a linear isometry — in particular, ⟨𝛼, 𝛽⟩ = ⟨𝑇 𝛼, 𝑇 𝛽⟩.

Summarizing these results, we say that any separable Hilbert space is isometrically isomorphic to ℓ2.
In essence, this says that each separable Hilbert space we consider is just a different way of looking at the fundamental
space ℓ2.
With this in mind, let’s specialize to a setting where

• 𝛾 ∈ ℓ2 is the autocovariance function of a covariance stationary process, and 𝑓 is the spectral density.
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• 𝐻 = 𝐿2, where 𝐿2 is the set of square summable functions on the interval [−𝜋, 𝜋], with inner product ⟨𝑔, ℎ⟩ =
∫𝜋
−𝜋 𝑔(𝜔)ℎ(𝜔)𝑑𝜔.

• {ℎ𝑘} = the orthonormal basis for 𝐿2 given by the set of trigonometric functions.

ℎ𝑘(𝜔) = 𝑒𝑖𝜔𝑘
√

2𝜋 , 𝑘 ∈ ℤ, 𝜔 ∈ [−𝜋, 𝜋]

Using the definition of 𝑇 from above and the fact that 𝑓 is even, we now have

𝑇 𝛾 = ∑
𝑘∈ℤ

𝛾(𝑘) 𝑒𝑖𝜔𝑘
√

2𝜋 = 1√
2𝜋 𝑓(𝜔) (15.16)

In other words, apart from a scalar multiple, the spectral density is just a transformation of 𝛾 ∈ ℓ2 under a certain linear
isometry — a different way to view 𝛾.
In particular, it is an expansion of the autocovariance function with respect to the trigonometric basis functions in 𝐿2.
As discussed above, the Fourier coefficients of 𝑇 𝛾 are given by the sequence 𝛾, and, in particular, 𝛾(𝑘) = ⟨𝑇 𝛾, ℎ𝑘⟩.
Transforming this inner product into its integral expression and using (15.16) gives (15.14), justifying our earlier expres-
sion for the inverse transform.

15.4 Implementation

Most code for working with covariance stationary models deals with ARMA models.
Python code for studying ARMA models can be found in the tsa submodule of statsmodels.
Since this code doesn’t quite cover our needs — particularly vis-a-vis spectral analysis — we’ve put together the module
arma.py, which is part of QuantEcon.py package.
The module provides functions for mapping ARMA(𝑝, 𝑞) models into their

1. impulse response function
2. simulated time series
3. autocovariance function
4. spectral density

15.4.1 Application

Let’s use this code to replicate the plots on pages 68–69 of [Ljungqvist and Sargent, 2018].
Here are some functions to generate the plots

def plot_impulse_response(arma, ax=None):
if ax is None:

ax = plt.gca()
yi = arma.impulse_response()
ax.stem(list(range(len(yi))), yi)
ax.set(xlim=(-0.5), ylim=(min(yi)-0.1, max(yi)+0.1),

title='Impulse response', xlabel='time', ylabel='response')
return ax

def plot_spectral_density(arma, ax=None):

(continues on next page)
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(continued from previous page)

if ax is None:
ax = plt.gca()

w, spect = arma.spectral_density(two_pi=False)
ax.semilogy(w, spect)
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

title='Spectral density', xlabel='frequency', ylabel='spectrum')
return ax

def plot_autocovariance(arma, ax=None):
if ax is None:

ax = plt.gca()
acov = arma.autocovariance()
ax.stem(list(range(len(acov))), acov)
ax.set(xlim=(-0.5, len(acov) - 0.5), title='Autocovariance',

xlabel='time', ylabel='autocovariance')
return ax

def plot_simulation(arma, ax=None):
if ax is None:

ax = plt.gca()
x_out = arma.simulation()
ax.plot(x_out)
ax.set(title='Sample path', xlabel='time', ylabel='state space')
return ax

def quad_plot(arma):
"""
Plots the impulse response, spectral_density, autocovariance,
and one realization of the process.

"""
num_rows, num_cols = 2, 2
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 7))
plot_functions = [plot_impulse_response,

plot_spectral_density,
plot_autocovariance,
plot_simulation]

for plot_func, ax in zip(plot_functions, axes.flatten()):
plot_func(arma, ax)

plt.tight_layout()
plt.show()

Now let’s call these functions to generate plots.
As a warmup, let’s make sure things look right when we for the pure white noise model 𝑋𝑡 = 𝜖𝑡.

ϕ = 0.0
θ = 0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪cbook.py:1699: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
return math.isfinite(val)

(continues on next page)
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/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪cbook.py:1345: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
return np.asarray(x, float)

/tmp/ipykernel_2005/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪transforms.py:992: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
self._points[:, 1] = interval

If we look carefully, things look good: the spectrum is the flat line at 100 at the very top of the spectrum graphs, which
is at it should be.
Also

• the variance equals 1 = 1
2𝜋 ∫𝜋

−𝜋 1𝑑𝜔 as it should.
• the covariogram and impulse response look as they should.
• it is actually challenging to visualize a time series realization of white noise – a sequence of surprises – but this too
looks pretty good.

To get some more examples, as our laboratory we’ll replicate quartets of graphs that [Ljungqvist and Sargent, 2018] use
to teach “how to read spectral densities”.
Ljunqvist and Sargent’s first model is 𝑋𝑡 = 1.3𝑋𝑡−1 − .7𝑋𝑡−2 + 𝜖𝑡
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ϕ = 1.3, -.7
θ = 0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/tmp/ipykernel_2005/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

Ljungqvist and Sargent’s second model is 𝑋𝑡 = .9𝑋𝑡−1 + 𝜖𝑡

ϕ = 0.9
θ = -0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/tmp/ipykernel_2005/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),
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Ljungqvist and Sargent’s third model is 𝑋𝑡 = .8𝑋𝑡−4 + 𝜖𝑡

ϕ = 0., 0., 0., .8
θ = -0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/tmp/ipykernel_2005/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),
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Ljungqvist and Sargent’s fourth model is 𝑋𝑡 = .98𝑋𝑡−1 + 𝜖𝑡 − .7𝜖𝑡−1

ϕ = .98
θ = -0.7
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/tmp/ipykernel_2005/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),
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15.4.2 Explanation

The call
arma = ARMA(ϕ, θ, σ)

creates an instance arma that represents the ARMA(𝑝, 𝑞) model

𝑋𝑡 = 𝜙1𝑋𝑡−1 + ... + 𝜙𝑝𝑋𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + ... + 𝜃𝑞𝜖𝑡−𝑞

If ϕ and θ are arrays or sequences, then the interpretation will be
• ϕ holds the vector of parameters (𝜙1, 𝜙2, ..., 𝜙𝑝).
• θ holds the vector of parameters (𝜃1, 𝜃2, ..., 𝜃𝑞).

The parameter σ is always a scalar, the standard deviation of the white noise.
We also permit ϕ and θ to be scalars, in which case the model will be interpreted as

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜖𝑡 + 𝜃𝜖𝑡−1

The two numerical packages most useful for working with ARMA models are scipy.signal and numpy.fft.
The package scipy.signal expects the parameters to be passed into its functions in a manner consistent with the
alternative ARMA notation (15.8).
For example, the impulse response sequence {𝜓𝑡} discussed above can be obtained usingscipy.signal.dimpulse,
and the function call should be of the form
times, ψ = dimpulse((ma_poly, ar_poly, 1), n=impulse_length)
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where ma_poly and ar_poly correspond to the polynomials in (15.7) — that is,
• ma_poly is the vector (1, 𝜃1, 𝜃2, … , 𝜃𝑞)
• ar_poly is the vector (1, −𝜙1, −𝜙2, … , −𝜙𝑝)

To this end, we also maintain the arrays ma_poly and ar_poly as instance data, with their values computed automat-
ically from the values of phi and theta supplied by the user.
If the user decides to change the value of either theta or phi ex-post by assignments such as arma.phi = (0.5,
0.2) or arma.theta = (0, -0.1).
then ma_poly and ar_poly should update automatically to reflect these new parameters.
This is achieved in our implementation by using descriptors.

15.4.3 Computing the Autocovariance Function

As discussed above, for ARMA processes the spectral density has a simple representation that is relatively easy to calculate.
Given this fact, the easiest way to obtain the autocovariance function is to recover it from the spectral density via the
inverse Fourier transform.
Here we use NumPy’s Fourier transform package np.fft, which wraps a standard Fortran-based package called FFTPACK.
A look at the np.fft documentation shows that the inverse transform np.fft.ifft takes a given sequence 𝐴0, 𝐴1, … , 𝐴𝑛−1
and returns the sequence 𝑎0, 𝑎1, … , 𝑎𝑛−1 defined by

𝑎𝑘 = 1
𝑛

𝑛−1
∑
𝑡=0

𝐴𝑡𝑒𝑖𝑘2𝜋𝑡/𝑛

Thus, if we set 𝐴𝑡 = 𝑓(𝜔𝑡), where 𝑓 is the spectral density and 𝜔𝑡 ∶= 2𝜋𝑡/𝑛, then

𝑎𝑘 = 1
𝑛

𝑛−1
∑
𝑡=0

𝑓(𝜔𝑡)𝑒𝑖𝜔𝑡𝑘 = 1
2𝜋

2𝜋
𝑛

𝑛−1
∑
𝑡=0

𝑓(𝜔𝑡)𝑒𝑖𝜔𝑡𝑘, 𝜔𝑡 ∶= 2𝜋𝑡/𝑛

For 𝑛 sufficiently large, we then have

𝑎𝑘 ≈ 1
2𝜋 ∫

2𝜋

0
𝑓(𝜔)𝑒𝑖𝜔𝑘𝑑𝜔 = 1

2𝜋 ∫
𝜋

−𝜋
𝑓(𝜔)𝑒𝑖𝜔𝑘𝑑𝜔

(You can check the last equality)
In view of (15.14), we have now shown that, for 𝑛 sufficiently large, 𝑎𝑘 ≈ 𝛾(𝑘) — which is exactly what we want to
compute.
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CHAPTER

SIXTEEN

ESTIMATION OF SPECTRA

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

16.1 Overview

In a previous lecture, we covered some fundamental properties of covariance stationary linear stochastic processes.
One objective for that lecture was to introduce spectral densities — a standard and very useful technique for analyzing
such processes.
In this lecture, we turn to the problem of estimating spectral densities and other related quantities from data.
Estimates of the spectral density are computed using what is known as a periodogram — which in turn is computed via
the famous fast Fourier transform.
Once the basic technique has been explained, we will apply it to the analysis of several key macroeconomic time series.
For supplementary reading, see [Sargent, 1987] or [Cryer and Chan, 2008].
Let’s start with some standard imports:

import numpy as np
import matplotlib.pyplot as plt
from quantecon import ARMA, periodogram, ar_periodogram

16.2 Periodograms

Recall that the spectral density 𝑓 of a covariance stationary process with autocorrelation function 𝛾 can be written

𝑓(𝜔) = 𝛾(0) + 2 ∑
𝑘≥1

𝛾(𝑘) cos(𝜔𝑘), 𝜔 ∈ ℝ

Now consider the problem of estimating the spectral density of a given time series, when 𝛾 is unknown.
In particular, let 𝑋0, … , 𝑋𝑛−1 be 𝑛 consecutive observations of a single time series that is assumed to be covariance
stationary.
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The most common estimator of the spectral density of this process is the periodogram of 𝑋0, … , 𝑋𝑛−1, which is defined
as

𝐼(𝜔) ∶= 1
𝑛 ∣

𝑛−1
∑
𝑡=0

𝑋𝑡𝑒𝑖𝑡𝜔∣
2

, 𝜔 ∈ ℝ (16.1)

(Recall that |𝑧| denotes the modulus of complex number 𝑧)
Alternatively, 𝐼(𝜔) can be expressed as

𝐼(𝜔) = 1
𝑛

⎧{
⎨{⎩

[
𝑛−1
∑
𝑡=0

𝑋𝑡 cos(𝜔𝑡)]
2

+ [
𝑛−1
∑
𝑡=0

𝑋𝑡 sin(𝜔𝑡)]
2⎫}
⎬}⎭

It is straightforward to show that the function 𝐼 is even and 2𝜋-periodic (i.e., 𝐼(𝜔) = 𝐼(−𝜔) and 𝐼(𝜔 + 2𝜋) = 𝐼(𝜔) for
all 𝜔 ∈ ℝ).
From these two results, you will be able to verify that the values of 𝐼 on [0, 𝜋] determine the values of 𝐼 on all of ℝ.
The next section helps to explain the connection between the periodogram and the spectral density.

16.2.1 Interpretation

To interpret the periodogram, it is convenient to focus on its values at the Fourier frequencies

𝜔𝑗 ∶= 2𝜋𝑗
𝑛 , 𝑗 = 0, … , 𝑛 − 1

In what sense is 𝐼(𝜔𝑗) an estimate of 𝑓(𝜔𝑗)?
The answer is straightforward, although it does involve some algebra.
With a bit of effort, one can show that for any integer 𝑗 > 0,

𝑛−1
∑
𝑡=0

𝑒𝑖𝑡𝜔𝑗 =
𝑛−1
∑
𝑡=0

exp{𝑖2𝜋𝑗 𝑡
𝑛} = 0

Letting �̄� denote the sample mean 𝑛−1 ∑𝑛−1
𝑡=0 𝑋𝑡, we then have

𝑛𝐼(𝜔𝑗) = ∣
𝑛−1
∑
𝑡=0

(𝑋𝑡 − �̄�)𝑒𝑖𝑡𝜔𝑗 ∣
2

=
𝑛−1
∑
𝑡=0

(𝑋𝑡 − �̄�)𝑒𝑖𝑡𝜔𝑗
𝑛−1
∑
𝑟=0

(𝑋𝑟 − �̄�)𝑒−𝑖𝑟𝜔𝑗

By carefully working through the sums, one can transform this to

𝑛𝐼(𝜔𝑗) =
𝑛−1
∑
𝑡=0

(𝑋𝑡 − �̄�)2 + 2
𝑛−1
∑
𝑘=1

𝑛−1
∑
𝑡=𝑘

(𝑋𝑡 − �̄�)(𝑋𝑡−𝑘 − �̄�) cos(𝜔𝑗𝑘)

Now let

̂𝛾(𝑘) ∶= 1
𝑛

𝑛−1
∑
𝑡=𝑘

(𝑋𝑡 − �̄�)(𝑋𝑡−𝑘 − �̄�), 𝑘 = 0, 1, … , 𝑛 − 1

This is the sample autocovariance function, the natural “plug-in estimator” of the autocovariance function 𝛾.
(“Plug-in estimator” is an informal term for an estimator found by replacing expectations with sample means)
With this notation, we can now write

𝐼(𝜔𝑗) = ̂𝛾(0) + 2
𝑛−1
∑
𝑘=1

̂𝛾(𝑘) cos(𝜔𝑗𝑘)

Recalling our expression for 𝑓 given above, we see that 𝐼(𝜔𝑗) is just a sample analog of 𝑓(𝜔𝑗).
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16.2.2 Calculation

Let’s now consider how to compute the periodogram as defined in (16.1).
There are already functions available that will do this for us — an example is statsmodels.tsa.stattools.
periodogram in the statsmodels package.
However, it is very simple to replicate their results, and this will give us a platform to make useful extensions.
The most common way to calculate the periodogram is via the discrete Fourier transform, which in turn is implemented
through the fast Fourier transform algorithm.
In general, given a sequence 𝑎0, … , 𝑎𝑛−1, the discrete Fourier transform computes the sequence

𝐴𝑗 ∶=
𝑛−1
∑
𝑡=0

𝑎𝑡 exp{𝑖2𝜋 𝑡𝑗
𝑛 } , 𝑗 = 0, … , 𝑛 − 1

With numpy.fft.fft imported as fft and 𝑎0, … , 𝑎𝑛−1 stored in NumPy array a, the function call fft(a) returns
the values 𝐴0, … , 𝐴𝑛−1 as a NumPy array.
It follows that when the data 𝑋0, … , 𝑋𝑛−1 are stored in array X, the values 𝐼(𝜔𝑗) at the Fourier frequencies, which are
given by

1
𝑛 ∣

𝑛−1
∑
𝑡=0

𝑋𝑡 exp{𝑖2𝜋 𝑡𝑗
𝑛 }∣

2

, 𝑗 = 0, … , 𝑛 − 1

can be computed by np.abs(fft(X))**2 / len(X).

Note: TheNumPy functionabs acts elementwise, and correctly handles complex numbers (by computing their modulus,
which is exactly what we need).

A function called periodogram that puts all this together can be found here.
Let’s generate some data for this function using the ARMA class from QuantEcon.py (see the lecture on linear processes
for more details).
Here’s a code snippet that, once the preceding code has been run, generates data from the process

𝑋𝑡 = 0.5𝑋𝑡−1 + 𝜖𝑡 − 0.8𝜖𝑡−2 (16.2)

where {𝜖𝑡} is white noise with unit variance, and compares the periodogram to the actual spectral density

n = 40 # Data size
ϕ, θ = 0.5, (0, -0.8) # AR and MA parameters
lp = ARMA(ϕ, θ)
X = lp.simulation(ts_length=n)

fig, ax = plt.subplots()
x, y = periodogram(X)
ax.plot(x, y, 'b-', lw=2, alpha=0.5, label='periodogram')
x_sd, y_sd = lp.spectral_density(two_pi=False, res=120)
ax.plot(x_sd, y_sd, 'r-', lw=2, alpha=0.8, label='spectral density')
ax.legend()
plt.show()
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/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪cbook.py:1699: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
return math.isfinite(val)

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪cbook.py:1345: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
return np.asarray(x, float)

This estimate looks rather disappointing, but the data size is only 40, so perhaps it’s not surprising that the estimate is
poor.
However, if we try again with n = 1200 the outcome is not much better
The periodogram is far too irregular relative to the underlying spectral density.
This brings us to our next topic.

16.3 Smoothing

There are two related issues here.
One is that, given the way the fast Fourier transform is implemented, the number of points 𝜔 at which 𝐼(𝜔) is estimated
increases in line with the amount of data.
In other words, although we have more data, we are also using it to estimate more values.
A second issue is that densities of all types are fundamentally hard to estimate without parametric assumptions.
Typically, nonparametric estimation of densities requires some degree of smoothing.
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The standard way that smoothing is applied to periodograms is by taking local averages.
In other words, the value 𝐼(𝜔𝑗) is replaced with a weighted average of the adjacent values

𝐼(𝜔𝑗−𝑝), 𝐼(𝜔𝑗−𝑝+1), … , 𝐼(𝜔𝑗), … , 𝐼(𝜔𝑗+𝑝)

This weighted average can be written as

𝐼𝑆(𝜔𝑗) ∶=
𝑝

∑
ℓ=−𝑝

𝑤(ℓ)𝐼(𝜔𝑗+ℓ) (16.3)

where the weights 𝑤(−𝑝), … , 𝑤(𝑝) are a sequence of 2𝑝 + 1 nonnegative values summing to one.
In general, larger values of 𝑝 indicate more smoothing — more on this below.
The next figure shows the kind of sequence typically used.
Note the smaller weights towards the edges and larger weights in the center, so that more distant values from 𝐼(𝜔𝑗) have
less weight than closer ones in the sum (16.3).

def hanning_window(M):
w = [0.5 - 0.5 * np.cos(2 * np.pi * n/(M-1)) for n in range(M)]
return w

window = hanning_window(25) / np.abs(sum(hanning_window(25)))
x = np.linspace(-12, 12, 25)
fig, ax = plt.subplots(figsize=(9, 7))
ax.plot(x, window)
ax.set_title("Hanning window")
ax.set_ylabel("Weights")
ax.set_xlabel("Position in sequence of weights")
plt.show()
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16.3.1 Estimation with Smoothing

Our next step is to provide code that will not only estimate the periodogram but also provide smoothing as required.
Such functions have been written in estspec.py and are available once you’ve installed QuantEcon.py.
The GitHub listing displays three functions, smooth(), periodogram(), ar_periodogram(). We will discuss
the first two here and the third one below.
The periodogram() function returns a periodogram, optionally smoothed via the smooth() function.
Regarding the smooth() function, since smoothing adds a nontrivial amount of computation, we have applied a fairly
terse array-centric method based around np.convolve.
Readers are left either to explore or simply to use this code according to their interests.
The next three figures each show smoothed and unsmoothed periodograms, as well as the population or “true” spectral
density.
(The model is the same as before — see equation (16.2) — and there are 400 observations)
From the top figure to bottom, the window length is varied from small to large.
In looking at the figure, we can see that for this model and data size, the window length chosen in the middle figure
provides the best fit.
Relative to this value, the first window length provides insufficient smoothing, while the third gives too much smoothing.
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Of course in real estimation problems, the true spectral density is not visible and the choice of appropriate smoothing will
have to be made based on judgement/priors or some other theory.

16.3.2 Pre-Filtering and Smoothing

In the code listing, we showed three functions from the file estspec.py.
The third function in the file (ar_periodogram()) adds a pre-processing step to periodogram smoothing.
First, we describe the basic idea, and after that we give the code.
The essential idea is to

1. Transform the data in order to make estimation of the spectral density more efficient.
2. Compute the periodogram associated with the transformed data.
3. Reverse the effect of the transformation on the periodogram, so that it now estimates the spectral density of the

original process.
Step 1 is called pre-filtering or pre-whitening, while step 3 is called recoloring.
The first step is called pre-whitening because the transformation is usually designed to turn the data into something closer
to white noise.
Why would this be desirable in terms of spectral density estimation?
The reason is that we are smoothing our estimated periodogram based on estimated values at nearby points — recall
(16.3).
The underlying assumption that makes this a good idea is that the true spectral density is relatively regular — the value
of 𝐼(𝜔) is close to that of 𝐼(𝜔′) when 𝜔 is close to 𝜔′.
This will not be true in all cases, but it is certainly true for white noise.
For white noise, 𝐼 is as regular as possible — it is a constant function.
In this case, values of 𝐼(𝜔′) at points 𝜔′ near to 𝜔 provided the maximum possible amount of information about the value
𝐼(𝜔).
Another way to put this is that if 𝐼 is relatively constant, then we can use a large amount of smoothing without introducing
too much bias.

16.3.3 The AR(1) Setting

Let’s examine this idea more carefully in a particular setting — where the data are assumed to be generated by an AR(1)
process.
(More general ARMA settings can be handled using similar techniques to those described below)
Suppose in particular that {𝑋𝑡} is covariance stationary and AR(1), with

𝑋𝑡+1 = 𝜇 + 𝜙𝑋𝑡 + 𝜖𝑡+1 (16.4)

where 𝜇 and 𝜙 ∈ (−1, 1) are unknown parameters and {𝜖𝑡} is white noise.
It follows that if we regress 𝑋𝑡+1 on 𝑋𝑡 and an intercept, the residuals will approximate white noise.
Let

• 𝑔 be the spectral density of {𝜖𝑡} — a constant function, as discussed above
• 𝐼0 be the periodogram estimated from the residuals — an estimate of 𝑔
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• 𝑓 be the spectral density of {𝑋𝑡} — the object we are trying to estimate
In view of an earlier result we obtained while discussing ARMA processes, 𝑓 and 𝑔 are related by

𝑓(𝜔) = ∣ 1
1 − 𝜙𝑒𝑖𝜔 ∣

2
𝑔(𝜔) (16.5)

This suggests that the recoloring step, which constructs an estimate 𝐼 of 𝑓 from 𝐼0, should set

𝐼(𝜔) = ∣ 1
1 − ̂𝜙𝑒𝑖𝜔

∣
2

𝐼0(𝜔)

where ̂𝜙 is the OLS estimate of 𝜙.
The code for ar_periodogram()— the third function in estspec.py— does exactly this. (See the code here).
The next figure shows realizations of the two kinds of smoothed periodograms

1. “standard smoothed periodogram”, the ordinary smoothed periodogram, and
2. “AR smoothed periodogram”, the pre-whitened and recolored one generated by ar_periodogram()

The periodograms are calculated from time series drawn from (16.4) with 𝜇 = 0 and 𝜙 = −0.9.
Each time series is of length 150.
The difference between the three subfigures is just randomness — each one uses a different draw of the time series.
In all cases, periodograms are fit with the “hamming” window and window length of 65.
Overall, the fit of the AR smoothed periodogram is much better, in the sense of being closer to the true spectral density.

16.4 Exercises

Exercise 16.4.1
Replicate this figure (modulo randomness).
The model is as in equation (16.2) and there are 400 observations.
For the smoothed periodogram, the window type is “hamming”.

Solution to Exercise 16.4.1

## Data
n = 400
ϕ = 0.5
θ = 0, -0.8
lp = ARMA(ϕ, θ)
X = lp.simulation(ts_length=n)

fig, ax = plt.subplots(3, 1, figsize=(10, 12))

for i, wl in enumerate((15, 55, 175)): # Window lengths

x, y = periodogram(X)
ax[i].plot(x, y, 'b-', lw=2, alpha=0.5, label='periodogram')

(continues on next page)
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(continued from previous page)

x_sd, y_sd = lp.spectral_density(two_pi=False, res=120)
ax[i].plot(x_sd, y_sd, 'r-', lw=2, alpha=0.8, label='spectral density')

x, y_smoothed = periodogram(X, window='hamming', window_len=wl)
ax[i].plot(x, y_smoothed, 'k-', lw=2, label='smoothed periodogram')

ax[i].legend()
ax[i].set_title(f'window length = {wl}')

plt.show()
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Exercise 16.4.2
Replicate this figure (modulo randomness).
The model is as in equation (16.4), with 𝜇 = 0, 𝜙 = −0.9 and 150 observations in each time series.
All periodograms are fit with the “hamming” window and window length of 65.
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Solution to Exercise 16.4.2

lp = ARMA(-0.9)
wl = 65

fig, ax = plt.subplots(3, 1, figsize=(10,12))

for i in range(3):
X = lp.simulation(ts_length=150)
ax[i].set_xlim(0, np.pi)

x_sd, y_sd = lp.spectral_density(two_pi=False, res=180)
ax[i].semilogy(x_sd, y_sd, 'r-', lw=2, alpha=0.75,

label='spectral density')

x, y_smoothed = periodogram(X, window='hamming', window_len=wl)
ax[i].semilogy(x, y_smoothed, 'k-', lw=2, alpha=0.75,

label='standard smoothed periodogram')

x, y_ar = ar_periodogram(X, window='hamming', window_len=wl)
ax[i].semilogy(x, y_ar, 'b-', lw=2, alpha=0.75,

label='AR smoothed periodogram')

ax[i].legend(loc='upper left')
plt.show()
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SEVENTEEN

ADDITIVE AND MULTIPLICATIVE FUNCTIONALS

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

17.1 Overview

Many economic time series display persistent growth that prevents them from being asymptotically stationary and ergodic.
For example, outputs, prices, and dividends typically display irregular but persistent growth.
Asymptotic stationarity and ergodicity are key assumptions needed to make it possible to learn by applying statistical
methods.
But there are good ways to model time series that have persistent growth that still enable statistical learning based on a
law of large numbers for an asymptotically stationary and ergodic process.
Thus, [Hansen, 2012] described two classes of time series models that accommodate growth.
They are

1. additive functionals that display random “arithmetic growth”
2. multiplicative functionals that display random “geometric growth”

These two classes of processes are closely connected.
If a process {𝑦𝑡} is an additive functional and 𝜙𝑡 = exp(𝑦𝑡), then {𝜙𝑡} is a multiplicative functional.
In this lecture, we describe both additive functionals and multiplicative functionals.
We also describe and compute decompositions of additive and multiplicative processes into four components:

1. a constant
2. a trend component
3. an asymptotically stationary component
4. a martingale

We describe how to construct, simulate, and interpret these components.
More details about these concepts and algorithms can be found in Hansen [Hansen, 2012] andHansen and Sargent [Hansen
and Sargent, 2024].
Let’s start with some imports:
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import numpy as np
import scipy.linalg as la
import quantecon as qe
import matplotlib.pyplot as plt
from scipy.stats import norm, lognorm

17.2 A Particular Additive Functional

[Hansen, 2012] describes a general class of additive functionals.
This lecture focuses on a subclass of these: a scalar process {𝑦𝑡}∞

𝑡=0 whose increments are driven by a Gaussian vector
autoregression.
Our special additive functional displays interesting time series behavior while also being easy to construct, simulate, and
analyze by using linear state-space tools.
We construct our additive functional from two pieces, the first of which is a first-order vector autoregression (VAR)

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑧𝑡+1 (17.1)

Here
• 𝑥𝑡 is an 𝑛 × 1 vector,
• 𝐴 is an 𝑛 × 𝑛 stable matrix (all eigenvalues lie within the open unit circle),
• 𝑧𝑡+1 ∼ 𝑁(0, 𝐼) is an 𝑚 × 1 IID shock,
• 𝐵 is an 𝑛 × 𝑚 matrix, and
• 𝑥0 ∼ 𝑁(𝜇0, Σ0) is a random initial condition for 𝑥

The second piece is an equation that expresses increments of {𝑦𝑡}∞
𝑡=0 as linear functions of

• a scalar constant 𝜈,
• the vector 𝑥𝑡, and
• the same Gaussian vector 𝑧𝑡+1 that appears in the VAR (17.1)

In particular,

𝑦𝑡+1 − 𝑦𝑡 = 𝜈 + 𝐷𝑥𝑡 + 𝐹𝑧𝑡+1 (17.2)

Here 𝑦0 ∼ 𝑁(𝜇𝑦0, Σ𝑦0) is a random initial condition for 𝑦.
The nonstationary random process {𝑦𝑡}∞

𝑡=0 displays systematic but random arithmetic growth.

17.2.1 Linear State-Space Representation

A convenient way to represent our additive functional is to use a linear state space system.
To do this, we set up state and observation vectors

̂𝑥𝑡 = ⎡⎢
⎣

1
𝑥𝑡
𝑦𝑡

⎤⎥
⎦

and ̂𝑦𝑡 = [𝑥𝑡
𝑦𝑡

]
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Next we construct a linear system

⎡⎢
⎣

1
𝑥𝑡+1
𝑦𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 𝐴 0
𝜈 𝐷 1

⎤⎥
⎦

⎡⎢
⎣

1
𝑥𝑡
𝑦𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

0
𝐵
𝐹

⎤⎥
⎦

𝑧𝑡+1

[𝑥𝑡
𝑦𝑡

] = [0 𝐼 0
0 0 1] ⎡⎢

⎣

1
𝑥𝑡
𝑦𝑡

⎤⎥
⎦

This can be written as

̂𝑥𝑡+1 = ̂𝐴 ̂𝑥𝑡 + �̂�𝑧𝑡+1

̂𝑦𝑡 = �̂� ̂𝑥𝑡

which is a standard linear state space system.
To study it, we could map it into an instance of LinearStateSpace from QuantEcon.py.
But here we will use a different set of code for simulation, for reasons described below.

17.3 Dynamics

Let’s run some simulations to build intuition.
In doing so we’ll assume that 𝑧𝑡+1 is scalar and that ̃𝑥𝑡 follows a 4th-order scalar autoregression.

̃𝑥𝑡+1 = 𝜙1 ̃𝑥𝑡 + 𝜙2 ̃𝑥𝑡−1 + 𝜙3 ̃𝑥𝑡−2 + 𝜙4 ̃𝑥𝑡−3 + 𝜎𝑧𝑡+1 (17.3)

in which the zeros 𝑧 of the polynomial

𝜙(𝑧) = (1 − 𝜙1𝑧 − 𝜙2𝑧2 − 𝜙3𝑧3 − 𝜙4𝑧4)

are strictly greater than unity in absolute value.
(Being a zero of 𝜙(𝑧) means that 𝜙(𝑧) = 0)
Let the increment in {𝑦𝑡} obey

𝑦𝑡+1 − 𝑦𝑡 = 𝜈 + ̃𝑥𝑡 + 𝜎𝑧𝑡+1

with an initial condition for 𝑦0.
While (17.3) is not a first order system like (17.1), we know that it can be mapped into a first order system.

• For an example of such a mapping, see this example.
In fact, this whole model can be mapped into the additive functional system definition in (17.1) – (17.2) by appropriate
selection of the matrices 𝐴, 𝐵, 𝐷, 𝐹 .
You can try writing these matrices down now as an exercise — correct expressions appear in the code below.
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17.3.1 Simulation

When simulating we embed our variables into a bigger system.
This system also constructs the components of the decompositions of 𝑦𝑡 and of exp(𝑦𝑡) proposed by Hansen [Hansen,
2012].
All of these objects are computed using the code below

class AMF_LSS_VAR:
"""
This class transforms an additive (multiplicative)
functional into a QuantEcon linear state space system.
"""

def __init__(self, A, B, D, F=None, ν=None):
# Unpack required elements
self.nx, self.nk = B.shape
self.A, self.B = A, B

# Checking the dimension of D (extended from the scalar case)
if len(D.shape) > 1 and D.shape[0] != 1:

self.nm = D.shape[0]
self.D = D

elif len(D.shape) > 1 and D.shape[0] == 1:
self.nm = 1
self.D = D

else:
self.nm = 1
self.D = np.expand_dims(D, 0)

# Create space for additive decomposition
self.add_decomp = None
self.mult_decomp = None

# Set F
if not np.any(F):

self.F = np.zeros((self.nk, 1))
else:

self.F = F

# Set ν
if not np.any(ν):

self.ν = np.zeros((self.nm, 1))
elif type(ν) == float:

self.ν = np.asarray([[ν]])
elif len(ν.shape) == 1:

self.ν = np.expand_dims(ν, 1)
else:

self.ν = ν

if self.ν.shape[0] != self.D.shape[0]:
raise ValueError("The dimension of ν is inconsistent with D!")

# Construct BIG state space representation
self.lss = self.construct_ss()

def construct_ss(self):

(continues on next page)
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"""
This creates the state space representation that can be passed
into the quantecon LSS class.
"""
# Pull out useful info
nx, nk, nm = self.nx, self.nk, self.nm
A, B, D, F, ν = self.A, self.B, self.D, self.F, self.ν
if self.add_decomp:

ν, H, g = self.add_decomp
else:

ν, H, g = self.additive_decomp()

# Auxiliary blocks with 0's and 1's to fill out the lss matrices
nx0c = np.zeros((nx, 1))
nx0r = np.zeros(nx)
nx1 = np.ones(nx)
nk0 = np.zeros(nk)
ny0c = np.zeros((nm, 1))
ny0r = np.zeros(nm)
ny1m = np.eye(nm)
ny0m = np.zeros((nm, nm))
nyx0m = np.zeros_like(D)

# Build A matrix for LSS
# Order of states is: [1, t, xt, yt, mt]
A1 = np.hstack([1, 0, nx0r, ny0r, ny0r]) # Transition for 1
A2 = np.hstack([1, 1, nx0r, ny0r, ny0r]) # Transition for t
# Transition for x_{t+1}
A3 = np.hstack([nx0c, nx0c, A, nyx0m.T, nyx0m.T])
# Transition for y_{t+1}
A4 = np.hstack([ν, ny0c, D, ny1m, ny0m])
# Transition for m_{t+1}
A5 = np.hstack([ny0c, ny0c, nyx0m, ny0m, ny1m])
Abar = np.vstack([A1, A2, A3, A4, A5])

# Build B matrix for LSS
Bbar = np.vstack([nk0, nk0, B, F, H])

# Build G matrix for LSS
# Order of observation is: [xt, yt, mt, st, tt]
# Selector for x_{t}
G1 = np.hstack([nx0c, nx0c, np.eye(nx), nyx0m.T, nyx0m.T])
G2 = np.hstack([ny0c, ny0c, nyx0m, ny1m, ny0m]) # Selector for y_{t}
# Selector for martingale
G3 = np.hstack([ny0c, ny0c, nyx0m, ny0m, ny1m])
G4 = np.hstack([ny0c, ny0c, -g, ny0m, ny0m]) # Selector for stationary
G5 = np.hstack([ny0c, ν, nyx0m, ny0m, ny0m]) # Selector for trend
Gbar = np.vstack([G1, G2, G3, G4, G5])

# Build H matrix for LSS
Hbar = np.zeros((Gbar.shape[0], nk))

# Build LSS type
x0 = np.hstack([1, 0, nx0r, ny0r, ny0r])
S0 = np.zeros((len(x0), len(x0)))
lss = qe.LinearStateSpace(Abar, Bbar, Gbar, Hbar, mu_0=x0, Sigma_0=S0)

(continues on next page)
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return lss

def additive_decomp(self):
"""
Return values for the martingale decomposition

- ν : unconditional mean difference in Y
- H : coefficient for the (linear) martingale component (κ_a)
- g : coefficient for the stationary component g(x)
- Y_0 : it should be the function of X_0 (for now set it to 0.0)

"""
I = np.identity(self.nx)
A_res = la.solve(I - self.A, I)
g = self.D @ A_res
H = self.F + self.D @ A_res @ self.B

return self.ν, H, g

def multiplicative_decomp(self):
"""
Return values for the multiplicative decomposition (Example 5.4.4.)

- ν_tilde : eigenvalue
- H : vector for the Jensen term

"""
ν, H, g = self.additive_decomp()
ν_tilde = ν + (.5)*np.expand_dims(np.diag(H @ H.T), 1)

return ν_tilde, H, g

def loglikelihood_path(self, x, y):
A, B, D, F = self.A, self.B, self.D, self.F
k, T = y.shape
FF = F @ F.T
FFinv = la.inv(FF)
temp = y[:, 1:] - y[:, :-1] - D @ x[:, :-1]
obs = temp * FFinv * temp
obssum = np.cumsum(obs)
scalar = (np.log(la.det(FF)) + k*np.log(2*np.pi))*np.arange(1, T)

return -(.5)*(obssum + scalar)

def loglikelihood(self, x, y):
llh = self.loglikelihood_path(x, y)

return llh[-1]
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Plotting

The code below adds some functions that generate plots for instances of the AMF_LSS_VAR class.

def plot_given_paths(amf, T, ypath, mpath, spath, tpath,
mbounds, sbounds, horline=0, show_trend=True):

# Allocate space
trange = np.arange(T)

# Create figure
fig, ax = plt.subplots(2, 2, sharey=True, figsize=(15, 8))

# Plot all paths together
ax[0, 0].plot(trange, ypath[0, :], label="$y_t$", color="k")
ax[0, 0].plot(trange, mpath[0, :], label="$m_t$", color="m")
ax[0, 0].plot(trange, spath[0, :], label="$s_t$", color="g")
if show_trend:

ax[0, 0].plot(trange, tpath[0, :], label="$t_t$", color="r")
ax[0, 0].axhline(horline, color="k", linestyle="-.")
ax[0, 0].set_title("One Path of All Variables")
ax[0, 0].legend(loc="upper left")

# Plot Martingale Component
ax[0, 1].plot(trange, mpath[0, :], "m")
ax[0, 1].plot(trange, mpath.T, alpha=0.45, color="m")
ub = mbounds[1, :]
lb = mbounds[0, :]

ax[0, 1].fill_between(trange, lb, ub, alpha=0.25, color="m")
ax[0, 1].set_title("Martingale Components for Many Paths")
ax[0, 1].axhline(horline, color="k", linestyle="-.")

# Plot Stationary Component
ax[1, 0].plot(spath[0, :], color="g")
ax[1, 0].plot(spath.T, alpha=0.25, color="g")
ub = sbounds[1, :]
lb = sbounds[0, :]
ax[1, 0].fill_between(trange, lb, ub, alpha=0.25, color="g")
ax[1, 0].axhline(horline, color="k", linestyle="-.")
ax[1, 0].set_title("Stationary Components for Many Paths")

# Plot Trend Component
if show_trend:

ax[1, 1].plot(tpath.T, color="r")
ax[1, 1].set_title("Trend Components for Many Paths")
ax[1, 1].axhline(horline, color="k", linestyle="-.")

return fig

def plot_additive(amf, T, npaths=25, show_trend=True):
"""
Plots for the additive decomposition.
Acts on an instance amf of the AMF_LSS_VAR class

"""
# Pull out right sizes so we know how to increment

(continues on next page)
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nx, nk, nm = amf.nx, amf.nk, amf.nm

# Allocate space (nm is the number of additive functionals -
# we want npaths for each)
mpath = np.empty((nm*npaths, T))
mbounds = np.empty((nm*2, T))
spath = np.empty((nm*npaths, T))
sbounds = np.empty((nm*2, T))
tpath = np.empty((nm*npaths, T))
ypath = np.empty((nm*npaths, T))

# Simulate for as long as we wanted
moment_generator = amf.lss.moment_sequence()
# Pull out population moments
for t in range (T):

tmoms = next(moment_generator)
ymeans = tmoms[1]
yvar = tmoms[3]

# Lower and upper bounds - for each additive functional
for ii in range(nm):

li, ui = ii*2, (ii+1)*2
mscale = np.sqrt(yvar[nx+nm+ii, nx+nm+ii])
sscale = np.sqrt(yvar[nx+2*nm+ii, nx+2*nm+ii])
if mscale == 0.0:

mscale = 1e-12 # avoids a RuntimeWarning from calculating ppf
if sscale == 0.0: # of normal distribution with std dev = 0.

sscale = 1e-12 # sets std dev to small value instead

madd_dist = norm(ymeans[nx+nm+ii], mscale)
sadd_dist = norm(ymeans[nx+2*nm+ii], sscale)

mbounds[li:ui, t] = madd_dist.ppf([0.01, .99])
sbounds[li:ui, t] = sadd_dist.ppf([0.01, .99])

# Pull out paths
for n in range(npaths):

x, y = amf.lss.simulate(T)
for ii in range(nm):

ypath[npaths*ii+n, :] = y[nx+ii, :]
mpath[npaths*ii+n, :] = y[nx+nm + ii, :]
spath[npaths*ii+n, :] = y[nx+2*nm + ii, :]
tpath[npaths*ii+n, :] = y[nx+3*nm + ii, :]

add_figs = []

for ii in range(nm):
li, ui = npaths*(ii), npaths*(ii+1)
LI, UI = 2*(ii), 2*(ii+1)
add_figs.append(plot_given_paths(amf, T,

ypath[li:ui,:],
mpath[li:ui,:],
spath[li:ui,:],
tpath[li:ui,:],
mbounds[LI:UI,:],
sbounds[LI:UI,:],

(continues on next page)
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show_trend=show_trend))

add_figs[ii].suptitle(f'Additive decomposition of $y_{ii+1}$',
fontsize=14)

return add_figs

def plot_multiplicative(amf, T, npaths=25, show_trend=True):
"""
Plots for the multiplicative decomposition

"""
# Pull out right sizes so we know how to increment
nx, nk, nm = amf.nx, amf.nk, amf.nm
# Matrices for the multiplicative decomposition
ν_tilde, H, g = amf.multiplicative_decomp()

# Allocate space (nm is the number of functionals -
# we want npaths for each)
mpath_mult = np.empty((nm*npaths, T))
mbounds_mult = np.empty((nm*2, T))
spath_mult = np.empty((nm*npaths, T))
sbounds_mult = np.empty((nm*2, T))
tpath_mult = np.empty((nm*npaths, T))
ypath_mult = np.empty((nm*npaths, T))

# Simulate for as long as we wanted
moment_generator = amf.lss.moment_sequence()
# Pull out population moments
for t in range(T):

tmoms = next(moment_generator)
ymeans = tmoms[1]
yvar = tmoms[3]

# Lower and upper bounds - for each multiplicative functional
for ii in range(nm):

li, ui = ii*2, (ii+1)*2
Mdist = lognorm(np.sqrt(yvar[nx+nm+ii, nx+nm+ii]).item(),

scale=np.exp(ymeans[nx+nm+ii] \
- t * (.5)
* np.expand_dims(

np.diag(H @ H.T),
1
)[ii]

).item()
)

Sdist = lognorm(np.sqrt(yvar[nx+2*nm+ii, nx+2*nm+ii]).item(),
scale = np.exp(-ymeans[nx+2*nm+ii]).item())

mbounds_mult[li:ui, t] = Mdist.ppf([.01, .99])
sbounds_mult[li:ui, t] = Sdist.ppf([.01, .99])

# Pull out paths
for n in range(npaths):

x, y = amf.lss.simulate(T)
for ii in range(nm):

(continues on next page)
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ypath_mult[npaths*ii+n, :] = np.exp(y[nx+ii, :])
mpath_mult[npaths*ii+n, :] = np.exp(y[nx+nm + ii, :] \

- np.arange(T)*(.5)
* np.expand_dims(np.diag(H

@ H.T),
1)[ii]

)
spath_mult[npaths*ii+n, :] = 1/np.exp(-y[nx+2*nm + ii, :])
tpath_mult[npaths*ii+n, :] = np.exp(y[nx+3*nm + ii, :]

+ np.arange(T)*(.5)
* np.expand_dims(np.diag(H

@ H.T),
1)[ii]

)

mult_figs = []

for ii in range(nm):
li, ui = npaths*(ii), npaths*(ii+1)
LI, UI = 2*(ii), 2*(ii+1)

mult_figs.append(plot_given_paths(amf,T,
ypath_mult[li:ui,:],
mpath_mult[li:ui,:],
spath_mult[li:ui,:],
tpath_mult[li:ui,:],
mbounds_mult[LI:UI,:],
sbounds_mult[LI:UI,:],
1,
show_trend=show_trend))

mult_figs[ii].suptitle(f'Multiplicative decomposition of \
$y_{ii+1}$', fontsize=14)

return mult_figs

def plot_martingale_paths(amf, T, mpath, mbounds, horline=1, show_trend=False):
# Allocate space
trange = np.arange(T)

# Create figure
fig, ax = plt.subplots(1, 1, figsize=(10, 6))

# Plot Martingale Component
ub = mbounds[1, :]
lb = mbounds[0, :]
ax.fill_between(trange, lb, ub, color="#ffccff")
ax.axhline(horline, color="k", linestyle="-.")
ax.plot(trange, mpath.T, linewidth=0.25, color="#4c4c4c")

return fig

def plot_martingales(amf, T, npaths=25):

# Pull out right sizes so we know how to increment
nx, nk, nm = amf.nx, amf.nk, amf.nm
# Matrices for the multiplicative decomposition

(continues on next page)
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ν_tilde, H, g = amf.multiplicative_decomp()

# Allocate space (nm is the number of functionals -
# we want npaths for each)
mpath_mult = np.empty((nm*npaths, T))
mbounds_mult = np.empty((nm*2, T))

# Simulate for as long as we wanted
moment_generator = amf.lss.moment_sequence()
# Pull out population moments
for t in range (T):

tmoms = next(moment_generator)
ymeans = tmoms[1]
yvar = tmoms[3]

# Lower and upper bounds - for each functional
for ii in range(nm):

li, ui = ii*2, (ii+1)*2
Mdist = lognorm(np.sqrt(yvar[nx+nm+ii, nx+nm+ii]).item(),

scale= np.exp(ymeans[nx+nm+ii] \
- t * (.5)
* np.expand_dims(

np.diag(H @ H.T),
1)[ii]

).item()
)

mbounds_mult[li:ui, t] = Mdist.ppf([.01, .99])

# Pull out paths
for n in range(npaths):

x, y = amf.lss.simulate(T)
for ii in range(nm):

mpath_mult[npaths*ii+n, :] = np.exp(y[nx+nm + ii, :] \
- np.arange(T) * (.5)
* np.expand_dims(np.diag(H

@ H.T),
1)[ii]

)

mart_figs = []

for ii in range(nm):
li, ui = npaths*(ii), npaths*(ii+1)
LI, UI = 2*(ii), 2*(ii+1)
mart_figs.append(plot_martingale_paths(amf, T, mpath_mult[li:ui, :],

mbounds_mult[LI:UI, :],
horline=1))

mart_figs[ii].suptitle(f'Martingale components for many paths of \
$y_{ii+1}$', fontsize=14)

return mart_figs

For now, we just plot 𝑦𝑡 and 𝑥𝑡, postponing until later a description of exactly how we compute them.
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ϕ_1, ϕ_2, ϕ_3, ϕ_4 = 0.5, -0.2, 0, 0.5
σ = 0.01
ν = 0.01 # Growth rate

# A matrix should be n x n
A = np.array([[ϕ_1, ϕ_2, ϕ_3, ϕ_4],

[ 1, 0, 0, 0],
[ 0, 1, 0, 0],
[ 0, 0, 1, 0]])

# B matrix should be n x k
B = np.array([[σ, 0, 0, 0]]).T

D = np.array([1, 0, 0, 0]) @ A
F = np.array([1, 0, 0, 0]) @ B

amf = AMF_LSS_VAR(A, B, D, F, ν=ν)

T = 150
x, y = amf.lss.simulate(T)

fig, ax = plt.subplots(2, 1, figsize=(10, 9))

ax[0].plot(np.arange(T), y[amf.nx, :], color='k')
ax[0].set_title('Path of $y_t$')
ax[1].plot(np.arange(T), y[0, :], color='g')
ax[1].axhline(0, color='k', linestyle='-.')
ax[1].set_title('Associated path of $x_t$')
plt.show()
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Notice the irregular but persistent growth in 𝑦𝑡.

17.3.2 Decomposition

Hansen and Sargent [Hansen and Sargent, 2024] describe how to construct a decomposition of an additive functional into
four parts:

• a constant inherited from initial values 𝑥0 and 𝑦0

• a linear trend
• a martingale
• an (asymptotically) stationary component

To attain this decomposition for the particular class of additive functionals defined by (17.1) and (17.2), we first construct
the matrices

𝐻 ∶= 𝐹 + 𝐷(𝐼 − 𝐴)−1𝐵
𝑔 ∶= 𝐷(𝐼 − 𝐴)−1
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Then the Hansen [Hansen, 2012], [Hansen and Sargent, 2024] decomposition is

𝑦𝑡 = 𝑡𝜈⏟
trend component

+

Martingale component
⏞𝑡
∑
𝑗=1

𝐻𝑧𝑗 − 𝑔𝑥𝑡⏟
stationary component

+
initial conditions
⏞𝑔𝑥0 + 𝑦0

At this stage, you should pause and verify that 𝑦𝑡+1 − 𝑦𝑡 satisfies (17.2).
It is convenient for us to introduce the following notation:

• 𝜏𝑡 = 𝜈𝑡 , a linear, deterministic trend
• 𝑚𝑡 = ∑𝑡

𝑗=1 𝐻𝑧𝑗, a martingale with time 𝑡 + 1 increment 𝐻𝑧𝑡+1

• 𝑠𝑡 = 𝑔𝑥𝑡, an (asymptotically) stationary component
We want to characterize and simulate components 𝜏𝑡, 𝑚𝑡, 𝑠𝑡 of the decomposition.
A convenient way to do this is to construct an appropriate instance of a linear state space system by using LinearStateSpace
from QuantEcon.py.
This will allow us to use the routines in LinearStateSpace to study dynamics.
To start, observe that, under the dynamics in (17.1) and (17.2) and with the definitions just given,

⎡
⎢
⎢
⎢
⎣

1
𝑡 + 1
𝑥𝑡+1
𝑦𝑡+1
𝑚𝑡+1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
0 0 𝐴 0 0
𝜈 0 𝐷 1 0
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1
𝑡

𝑥𝑡
𝑦𝑡
𝑚𝑡

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
0
𝐵
𝐹
𝐻

⎤
⎥
⎥
⎥
⎦

𝑧𝑡+1

and

⎡
⎢
⎢
⎢
⎣

𝑥𝑡
𝑦𝑡
𝜏𝑡
𝑚𝑡
𝑠𝑡

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 0 𝐼 0 0
0 0 0 1 0
0 𝜈 0 0 0
0 0 0 0 1
0 0 −𝑔 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1
𝑡

𝑥𝑡
𝑦𝑡
𝑚𝑡

⎤
⎥
⎥
⎥
⎦

With

̃𝑥 ∶=
⎡
⎢
⎢
⎢
⎣

1
𝑡

𝑥𝑡
𝑦𝑡
𝑚𝑡

⎤
⎥
⎥
⎥
⎦

and ̃𝑦 ∶=
⎡
⎢
⎢
⎢
⎣

𝑥𝑡
𝑦𝑡
𝜏𝑡
𝑚𝑡
𝑠𝑡

⎤
⎥
⎥
⎥
⎦

we can write this as the linear state space system

̃𝑥𝑡+1 = ̃𝐴 ̃𝑥𝑡 + �̃�𝑧𝑡+1

̃𝑦𝑡 = �̃� ̃𝑥𝑡

By picking out components of ̃𝑦𝑡, we can track all variables of interest.
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17.4 Code

The class AMF_LSS_VAR mentioned above does all that we want to study our additive functional.
In fact, AMF_LSS_VAR does more because it allows us to study an associated multiplicative functional as well.
(A hint that it does more is the name of the class – here AMF stands for “additive and multiplicative functional” – the
code computes and displays objects associated with multiplicative functionals too.)
Let’s use this code (embedded above) to explore the example process described above.
If you run the code that first simulated that example again and then the method call you will generate (modulo randomness)
the plot

plot_additive(amf, T)
plt.show()

When we plot multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plot the population 95%
probability coverage sets computed using the LinearStateSpace class.
We have chosen to simulate many paths, all starting from the same non-random initial conditions 𝑥0, 𝑦0 (you can tell this
from the shape of the 95% probability coverage shaded areas).
Notice tell-tale signs of these probability coverage shaded areas

• the purple one for the martingale component 𝑚𝑡 grows with
√

𝑡
• the green one for the stationary component 𝑠𝑡 converges to a constant band
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17.4.1 Associated Multiplicative Functional

Where {𝑦𝑡} is our additive functional, let 𝑀𝑡 = exp(𝑦𝑡).
As mentioned above, the process {𝑀𝑡} is called a multiplicative functional.
Corresponding to the additive decomposition described above we have a multiplicative decomposition of 𝑀𝑡

𝑀𝑡
𝑀0

= exp(𝑡𝜈) exp(
𝑡

∑
𝑗=1

𝐻 ⋅ 𝑍𝑗) exp(𝐷(𝐼 − 𝐴)−1𝑥0 − 𝐷(𝐼 − 𝐴)−1𝑥𝑡)

or

𝑀𝑡
𝑀0

= exp ( ̃𝜈𝑡) ( 𝑀𝑡
𝑀0

) ( ̃𝑒(𝑋0)
̃𝑒(𝑥𝑡)

)

where

̃𝜈 = 𝜈 + 𝐻 ⋅ 𝐻
2 , 𝑀𝑡 = exp(

𝑡
∑
𝑗=1

(𝐻 ⋅ 𝑧𝑗 − 𝐻 ⋅ 𝐻
2 )), 𝑀0 = 1

and

̃𝑒(𝑥) = exp[𝑔(𝑥)] = exp[𝐷(𝐼 − 𝐴)−1𝑥]

An instance of class AMF_LSS_VAR (above) includes this associated multiplicative functional as an attribute.
Let’s plot this multiplicative functional for our example.
If you run the code that first simulated that example again and then the method call in the cell below you’ll obtain the graph
in the next cell.

plot_multiplicative(amf, T)
plt.show()
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As before, when we plottedmultiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plotted population
95% confidence bands computed using the LinearStateSpace class.
Comparing this figure and the last also helps show how geometric growth differs from arithmetic growth.
The top right panel of the above graph shows a panel of martingales associated with the panel of 𝑀𝑡 = exp(𝑦𝑡) that we
have generated for a limited horizon 𝑇 .
It is interesting to how the martingale behaves as 𝑇 → +∞.
Let’s see what happens when we set 𝑇 = 12000 instead of 150.

17.4.2 Peculiar Large Sample Property

Hansen and Sargent [Hansen and Sargent, 2024] (ch. 8) describe the following two properties of themartingale component
𝑀𝑡 of the multiplicative decomposition

• while 𝐸0𝑀𝑡 = 1 for all 𝑡 ≥ 0, nevertheless …
• as 𝑡 → +∞, 𝑀𝑡 converges to zero almost surely

The first property follows from the fact that 𝑀𝑡 is a multiplicative martingale with initial condition 𝑀0 = 1.
The second is a peculiar property noted and proved by Hansen and Sargent [Hansen and Sargent, 2024].

The following simulation of many paths of 𝑀𝑡 illustrates both properties

np.random.seed(10021987)
plot_martingales(amf, 12000)
plt.show()

17.4. Code 327



Tools and Techniques for Computational Economics

The dotted line in the above graph is the mean 𝐸�̃�𝑡 = 1 of the martingale.
It remains constant at unity, illustrating the first property.
The purple 95 percent frequency coverage interval collapses around zero, illustrating the second property.

17.5 More About the Multiplicative Martingale

Let’s drill down and study probability distribution of the multiplicative martingale {𝑀𝑡}∞
𝑡=0 in more detail.

As we have seen, it has representation

𝑀𝑡 = exp(
𝑡

∑
𝑗=1

(𝐻 ⋅ 𝑧𝑗 − 𝐻 ⋅ 𝐻
2 )), 𝑀0 = 1

where 𝐻 = [𝐹 + 𝐷(𝐼 − 𝐴)−1𝐵].
It follows that log𝑀𝑡 ∼ 𝒩(− 𝑡𝐻⋅𝐻

2 , 𝑡𝐻 ⋅ 𝐻) and that consequently 𝑀𝑡 is log normal.

17.5.1 Simulating a Multiplicative Martingale Again

Next, we want a program to simulate the likelihood ratio process {�̃�𝑡}∞
𝑡=0.

In particular, we want to simulate 5000 sample paths of length 𝑇 for the case in which 𝑥 is a scalar and [𝐴, 𝐵, 𝐷, 𝐹 ] =
[0.8, 0.001, 1.0, 0.01] and 𝜈 = 0.005.
After accomplishing this, we want to display and study histograms of �̃� 𝑖

𝑇 for various values of 𝑇 .
Here is code that accomplishes these tasks.

17.5.2 Sample Paths

Let’s write a program to simulate sample paths of {𝑥𝑡, 𝑦𝑡}∞
𝑡=0.

We’ll do this by formulating the additive functional as a linear state space model and putting the LinearStateSpace class
to work.

class AMF_LSS_VAR:
"""
This class is written to transform a scalar additive functional
into a linear state space system.
"""
def __init__(self, A, B, D, F=0.0, ν=0.0):

# Unpack required elements
self.A, self.B, self.D, self.F, self.ν = A, B, D, F, ν

# Create space for additive decomposition
self.add_decomp = None
self.mult_decomp = None

# Construct BIG state space representation
self.lss = self.construct_ss()

def construct_ss(self):

(continues on next page)
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(continued from previous page)

"""
This creates the state space representation that can be passed
into the quantecon LSS class.
"""
# Pull out useful info
A, B, D, F, ν = self.A, self.B, self.D, self.F, self.ν
nx, nk, nm = 1, 1, 1
if self.add_decomp:

ν, H, g = self.add_decomp
else:

ν, H, g = self.additive_decomp()

# Build A matrix for LSS
# Order of states is: [1, t, xt, yt, mt]
A1 = np.hstack([1, 0, 0, 0, 0]) # Transition for 1
A2 = np.hstack([1, 1, 0, 0, 0]) # Transition for t
A3 = np.hstack([0, 0, A, 0, 0]) # Transition for x_{t+1}
A4 = np.hstack([ν, 0, D, 1, 0]) # Transition for y_{t+1}
A5 = np.hstack([0, 0, 0, 0, 1]) # Transition for m_{t+1}
Abar = np.vstack([A1, A2, A3, A4, A5])

# Build B matrix for LSS
Bbar = np.vstack([0, 0, B, F, H])

# Build G matrix for LSS
# Order of observation is: [xt, yt, mt, st, tt]
G1 = np.hstack([0, 0, 1, 0, 0]) # Selector for x_{t}
G2 = np.hstack([0, 0, 0, 1, 0]) # Selector for y_{t}
G3 = np.hstack([0, 0, 0, 0, 1]) # Selector for martingale
G4 = np.hstack([0, 0, -g, 0, 0]) # Selector for stationary
G5 = np.hstack([0, ν, 0, 0, 0]) # Selector for trend
Gbar = np.vstack([G1, G2, G3, G4, G5])

# Build H matrix for LSS
Hbar = np.zeros((1, 1))

# Build LSS type
x0 = np.hstack([1, 0, 0, 0, 0])
S0 = np.zeros((5, 5))
lss = qe.LinearStateSpace(Abar, Bbar, Gbar, Hbar,

mu_0=x0, Sigma_0=S0)

return lss

def additive_decomp(self):
"""
Return values for the martingale decomposition (Proposition 4.3.3.)

- ν : unconditional mean difference in Y
- H : coefficient for the (linear) martingale component (kappa_a)
- g : coefficient for the stationary component g(x)
- Y_0 : it should be the function of X_0 (for now set it to 0.0)

"""
A_res = 1 / (1 - self.A)
g = self.D * A_res
H = self.F + self.D * A_res * self.B

(continues on next page)
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return self.ν, H, g

def multiplicative_decomp(self):
"""
Return values for the multiplicative decomposition (Example 5.4.4.)

- ν_tilde : eigenvalue
- H : vector for the Jensen term

"""
ν, H, g = self.additive_decomp()
ν_tilde = ν + (.5) * H**2

return ν_tilde, H, g

def loglikelihood_path(self, x, y):
A, B, D, F = self.A, self.B, self.D, self.F
T = y.T.size
FF = F**2
FFinv = 1 / FF
temp = y[1:] - y[:-1] - D * x[:-1]
obs = temp * FFinv * temp
obssum = np.cumsum(obs)
scalar = (np.log(FF) + np.log(2 * np.pi)) * np.arange(1, T)

return (-0.5) * (obssum + scalar)

def loglikelihood(self, x, y):
llh = self.loglikelihood_path(x, y)

return llh[-1]

The heavy lifting is done inside the AMF_LSS_VAR class.
The following code adds some simple functions that make it straightforward to generate sample paths from an instance of
AMF_LSS_VAR.

def simulate_xy(amf, T):
"Simulate individual paths."
foo, bar = amf.lss.simulate(T)
x = bar[0, :]
y = bar[1, :]

return x, y

def simulate_paths(amf, T=150, I=5000):
"Simulate multiple independent paths."

# Allocate space
storeX = np.empty((I, T))
storeY = np.empty((I, T))

for i in range(I):
# Do specific simulation
x, y = simulate_xy(amf, T)

# Fill in our storage matrices
storeX[i, :] = x

(continues on next page)

330 Chapter 17. Additive and Multiplicative Functionals



Tools and Techniques for Computational Economics

(continued from previous page)

storeY[i, :] = y

return storeX, storeY

def population_means(amf, T=150):
# Allocate Space
xmean = np.empty(T)
ymean = np.empty(T)

# Pull out moment generator
moment_generator = amf.lss.moment_sequence()

for tt in range (T):
tmoms = next(moment_generator)
ymeans = tmoms[1]
xmean[tt] = ymeans[0]
ymean[tt] = ymeans[1]

return xmean, ymean

Now that we have these functions in our toolkit, let’s apply them to run some simulations.

def simulate_martingale_components(amf, T=1000, I=5000):
# Get the multiplicative decomposition
ν, H, g = amf.multiplicative_decomp()

# Allocate space
add_mart_comp = np.empty((I, T))

# Simulate and pull out additive martingale component
for i in range(I):

foo, bar = amf.lss.simulate(T)

# Martingale component is third component
add_mart_comp[i, :] = bar[2, :]

mul_mart_comp = np.exp(add_mart_comp - (np.arange(T) * H**2)/2)

return add_mart_comp, mul_mart_comp

# Build model
amf_2 = AMF_LSS_VAR(0.8, 0.001, 1.0, 0.01,.005)

amc, mmc = simulate_martingale_components(amf_2, 1000, 5000)

amcT = amc[:, -1]
mmcT = mmc[:, -1]

print("The (min, mean, max) of additive Martingale component in period T is")
print(f"\t ({np.min(amcT)}, {np.mean(amcT)}, {np.max(amcT)})")

print("The (min, mean, max) of multiplicative Martingale component \
in period T is")
print(f"\t ({np.min(mmcT)}, {np.mean(mmcT)}, {np.max(mmcT)})")
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The (min, mean, max) of additive Martingale component in period T is
(-1.8379907335579106, 0.011040789361757435, 1.4697384727035145)

The (min, mean, max) of multiplicative Martingale component in period T is
(0.14222026893384476, 1.006753060146832, 3.8858858377907133)

Let’s plot the probability density functions for log𝑀𝑡 for 𝑡 = 100, 500, 1000, 10000, 100000.
Then let’s use the plots to investigate how these densities evolve through time.

We will plot the densities of log𝑀𝑡 for different values of 𝑡.

Note: scipy.stats.lognorm expects you to pass the standard deviation first (𝑡𝐻 ⋅ 𝐻) and then the exponent of
the mean as a keyword argument scale (scale=np.exp(-t * H2 / 2)).

• See the documentation here.
This is peculiar, so make sure you are careful in working with the log normal distribution.

Here is some code that tackles these tasks

def Mtilde_t_density(amf, t, xmin=1e-8, xmax=5.0, npts=5000):

# Pull out the multiplicative decomposition
νtilde, H, g = amf.multiplicative_decomp()
H2 = H*H

# The distribution
mdist = lognorm(np.sqrt(t*H2), scale=np.exp(-t*H2/2))
x = np.linspace(xmin, xmax, npts)
pdf = mdist.pdf(x)

return x, pdf

def logMtilde_t_density(amf, t, xmin=-15.0, xmax=15.0, npts=5000):

# Pull out the multiplicative decomposition
νtilde, H, g = amf.multiplicative_decomp()
H2 = H*H

# The distribution
lmdist = norm(-t*H2/2, np.sqrt(t*H2))
x = np.linspace(xmin, xmax, npts)
pdf = lmdist.pdf(x)

return x, pdf

times_to_plot = [10, 100, 500, 1000, 2500, 5000]
dens_to_plot = map(lambda t: Mtilde_t_density(amf_2, t, xmin=1e-8, xmax=6.0),

times_to_plot)
ldens_to_plot = map(lambda t: logMtilde_t_density(amf_2, t, xmin=-10.0,

xmax=10.0), times_to_plot)

fig, ax = plt.subplots(3, 2, figsize=(14, 14))
ax = ax.flatten()

(continues on next page)
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fig.suptitle(r"Densities of $\tilde{M}_t$", fontsize=18, y=1.02)
for (it, dens_t) in enumerate(dens_to_plot):

x, pdf = dens_t
ax[it].set_title(f"Density for time {times_to_plot[it]}")
ax[it].fill_between(x, np.zeros_like(pdf), pdf)

plt.tight_layout()
plt.show()

These probability density functions help us understand mechanics underlying the peculiar property of our multiplicative
martingale

• As 𝑇 grows, most of the probability mass shifts leftward toward zero.
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• For example, note that most mass is near 1 for 𝑇 = 10 or 𝑇 = 100 but most of it is near 0 for 𝑇 = 5000.
• As 𝑇 grows, the tail of the density of 𝑀𝑇 lengthens toward the right.

• Enough mass moves toward the right tail to keep 𝐸𝑀𝑇 = 1 even as most mass in the distribution of 𝑀𝑇 collapses
around 0.

17.5.3 Multiplicative Martingale as Likelihood Ratio Process

This lecture studies likelihood processes and likelihood ratio processes.
A likelihood ratio process is a multiplicative martingale with mean unity.
Likelihood ratio processes exhibit the peculiar property that naturally also appears here.
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CHAPTER

EIGHTEEN

RISK AND MODEL UNCERTAINTY

18.1 Overview

As an introduction to one possible approach to modeling Knightian uncertainty, this lecture describes static represen-
tations of five classes of preferences over risky prospects.
These preference specifications allow us to distinguish risk from uncertainty along lines proposed by [Knight, 1921].
All five preference specifications incorporate risk aversion, meaning displeasure from risks governed by well known
probability distributions.
Two of them also incorporate uncertainty aversion, meaning dislike of not knowing a probability distribution.
The preference orderings are

• Expected utility preferences
• Constraint preferences
• Multiplier preferences
• Risk-sensitive preferences
• Ex post Bayesian expected utility preferences

This labeling scheme is taken from [Hansen and Sargent, 2001].
Constraint and multiplier preferences express aversion to not knowing a unique probabiity distribution that desribes ran-
dom outcomes.
Expected utility, risk-sensitive, and ex post Bayesian expected utility preferences all attribute a unique known probability
distribution to a decision maker.
We present things in a simple before-and-after one-period setting.
In addition to learning about these preference orderings, this lecture also describes some interesting code for computing
and graphing some representations of indifference curves, utility functions, and related objects.
Staring at these indifference curves provides insights into the different preferences.
Watch for the presence of a kink at the 45 degree line for the constraint preference indifference curves.
We begin with some that we’ll use to create some graphs.

# Package imports
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)

(continues on next page)
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from matplotlib import rc, cm
from mpl_toolkits.mplot3d import Axes3D
from scipy import optimize, stats
from scipy.io import loadmat
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap, BoundaryNorm
from numba import njit

18.2 Basic objects

Basic ingredients are
• a set of states of the world
• plans describing outcomes as functions of the state of the world,
• a utility function mapping outcomes into utilities
• either a probability distribution or a set of probability distributions over states of the world; and
• a way of measuring a discrepancy between two probability distributions.

In more detail, we’ll work with the following setting.
• A finite set of possible states 𝐼 = {𝑖 = 1, … , 𝐼}.
• A (consumption) plan is a function 𝑐 ∶ 𝐼 → ℝ.
• 𝑢 ∶ ℝ → ℝ is a utility function.

• 𝜋 is an 𝐼 × 1 vector of nonnegative probabilities over states, with 𝜋𝑖 ≥ 0, ∑𝐼
𝑖=1 𝜋𝑖 = 1.

• Relative entropy ent(𝜋, ̂𝜋) of a probability vector ̂𝜋 with respect to a probability vector 𝜋 is the expected value of
the logarithm of the likelihood ratio 𝑚𝑖 ≐ ( �̂�𝑖

𝜋𝑖
) under distribution ̂𝜋 defined as:

ent(𝜋, ̂𝜋) =
𝐼

∑
𝑖=1

̂𝜋𝑖 log(
̂𝜋𝑖

𝜋𝑖
) =

𝐼
∑
𝑖=1

𝜋𝑖(
̂𝜋𝑖

𝜋𝑖
) log( ̂𝜋𝑖

𝜋𝑖
)

or

ent(𝜋, ̂𝜋) =
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖.

Remark: A likelihood ratio 𝑚𝑖 is a discrete random variable. For any discrete random variable {𝑥𝑖}𝐼
𝑖=1, the expected

value of 𝑥 under the ̂𝜋𝑖 distribution can be represented as the expected value under the 𝜋 distribution of the product of
𝑥𝑖 times the `shock’ 𝑚𝑖:

̂𝐸𝑥 =
𝐼

∑
𝑖=1

𝑥𝑖 ̂𝜋𝑖 =
𝐼

∑
𝑖=1

𝑚𝑖𝑥𝑖𝜋𝑖 = 𝐸𝑚𝑥,

where ̂𝐸 is the mathematical expectation under the ̂𝜋 distribution and 𝐸 is the expectation under the 𝜋 distribution.
Evidently,

̂𝐸1 = 𝐸𝑚 = 1

338 Chapter 18. Risk and Model Uncertainty



Tools and Techniques for Computational Economics

and relative entropy is

𝐸𝑚 log𝑚 = ̂𝐸 log𝑚.

In the three figures below, we plot relative entropy from several perspectives.
Our first figure depicts entropy as a function of ̂𝜋1 when 𝐼 = 2 and 𝜋1 = .5.
When 𝜋1 ∈ (0, 1), entropy is finite for both ̂𝜋1 = 0 and ̂𝜋1 = 1 because lim𝑥→0 𝑥 log𝑥 = 0
However, when 𝜋1 = 0 or 𝜋1 = 1, entropy is infinite.

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

(continues on next page)

18.2. Basic objects 339



Tools and Techniques for Computational Economics

(continued from previous page)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
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97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)
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66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
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300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 500x300 with 1 Axes>

Fig. 18.1: Figure 1

The heat maps in the next two figures vary both ̂𝜋1 and 𝜋1.
The following figure plots entropy.

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group) (continues on next page)
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1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
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154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3034, in _AxesBase.draw(self, renderer)
3031 for spine in self.spines.values():
3032 artists.remove(spine)

-> 3034 self._update_title_position(renderer)
3036 if not self.axison:
3037 for _axis in self._axis_map.values():

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:2978, in _AxesBase._update_title_position(self, renderer)
2976 top = max(top, bb.ymax)
2977 if title.get_text():

-> 2978 ax.yaxis.get_tightbbox(renderer) # update offsetText
2979 if ax.yaxis.offsetText.get_text():
2980 bb = ax.yaxis.offsetText.get_tightbbox(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1336, in Axis.get_tightbbox(self, renderer, for_layout_only)
1333 renderer = self.figure._get_renderer()
1334 ticks_to_draw = self._update_ticks()

-> 1336 self._update_label_position(renderer)
1338 # go back to just this axis's tick labels
1339 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2609, in YAxis._update_label_position(self, renderer)
2605 return
2607 # get bounding boxes for this axis and any siblings
2608 # that have been set by `fig.align_ylabels()`

-> 2609 bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer)
2610 x, y = self.label.get_position()
2611 if self.label_position == 'left':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2161, in Axis._get_tick_boxes_siblings(self, renderer)
2159 axis = ax._axis_map[name]
2160 ticks_to_draw = axis._update_ticks()

-> 2161 tlb, tlb2 = axis._get_ticklabel_bboxes(ticks_to_draw, renderer)
2162 bboxes.extend(tlb)
2163 bboxes2.extend(tlb2)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
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1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

(continues on next page)
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648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1000x800 with 2 Axes>

The next figure plots the logarithm of entropy.

3.8205752275831846

/tmp/ipykernel_2218/3759713737.py:2: RuntimeWarning: divide by zero encountered in␣
↪log

(continues on next page)
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plt.pcolormesh(x, y, np.log(ent_vals_mat.T), shading='gouraud', cmap='seismic')

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

(continues on next page)
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RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

(continues on next page)
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---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3034, in _AxesBase.draw(self, renderer)
3031 for spine in self.spines.values():
3032 artists.remove(spine)

-> 3034 self._update_title_position(renderer)
3036 if not self.axison:
3037 for _axis in self._axis_map.values():

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:2978, in _AxesBase._update_title_position(self, renderer)
2976 top = max(top, bb.ymax)
2977 if title.get_text():

-> 2978 ax.yaxis.get_tightbbox(renderer) # update offsetText
2979 if ax.yaxis.offsetText.get_text():
2980 bb = ax.yaxis.offsetText.get_tightbbox(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1336, in Axis.get_tightbbox(self, renderer, for_layout_only)
1333 renderer = self.figure._get_renderer()
1334 ticks_to_draw = self._update_ticks()

-> 1336 self._update_label_position(renderer)
1338 # go back to just this axis's tick labels
1339 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2609, in YAxis._update_label_position(self, renderer)

(continues on next page)
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2605 return
2607 # get bounding boxes for this axis and any siblings
2608 # that have been set by `fig.align_ylabels()`

-> 2609 bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer)
2610 x, y = self.label.get_position()
2611 if self.label_position == 'left':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2161, in Axis._get_tick_boxes_siblings(self, renderer)
2159 axis = ax._axis_map[name]
2160 ticks_to_draw = axis._update_ticks()

-> 2161 tlb, tlb2 = axis._get_ticklabel_bboxes(ticks_to_draw, renderer)
2162 bboxes.extend(tlb)
2163 bboxes2.extend(tlb2)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""

(continues on next page)
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67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1000x800 with 2 Axes>

18.3 Five preference specifications

We describe five types of preferences over plans.
• Expected utility preferences
• Constraint preferences
• Multiplier preferences
• Risk-sensitive preferences
• Ex post Bayesian expected utility preferences

Expected utility, risk-sensitive, and ex post Bayesian prefernces are each cast in terms of a unique probability distribution,
so they can express risk-aversion, but not model ambiguity aversion.
Multiplier and constraint prefernces both express aversion to concerns about model misppecification, i.e., model uncer-
tainty; both are cast in terms of a set or sets of probability distributions.

• The set of distributions expresses the decision maker’s ambiguity about the probability model.
• Minimization over probability distributions expresses his aversion to ambiguity.
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18.4 Expected utility

A decision maker is said to have expected utility preferences when he ranks plans 𝑐 by their expected utilities
𝐼

∑
𝑖=1

𝑢(𝑐𝑖)𝜋𝑖, (18.1)

where 𝑢 is a unique utility function and 𝜋 is a unique probability measure over states.
• A known 𝜋 expresses risk.
• Curvature of 𝑢 expresses risk aversion.

18.5 Constraint preferences

A decision maker is said to have constraint preferences when he ranks plans 𝑐 according to

min
{𝑚𝑖≥0}𝐼

𝑖=1

𝐼
∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) (18.2)

subject to

𝐼
∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖 ≤ 𝜂 (18.3)

and
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 = 1. (18.4)

In (18.3), 𝜂 ≥ 0 defines an entropy ball of probability distributions ̂𝜋 = 𝑚𝜋 that surround a baseline distribution 𝜋.
As noted earlier, ∑𝐼

𝑖=1 𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) is the expected value of 𝑢(𝑐) under a twisted probability distribution { ̂𝜋𝑖}𝐼
𝑖=1 =

{𝑚𝑖𝜋𝑖}𝐼
𝑖=1.

Larger values of the entropy constraint 𝜂 indicate more apprehension about the baseline probability distribution {𝜋𝑖}𝐼
𝑖=1.

Following [Hansen and Sargent, 2001] and [Hansen and Sargent, 2008], we call minimization problem (18.2) subject to
(18.3) and(18.4) a constraint problem.
To find minimizing probabilities, we form a Lagrangian

𝐿 =
𝐼

∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) + ̃𝜃[
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖 − 𝜂] (18.5)

where ̃𝜃 ≥ 0 is a Lagrange multiplier associated with the entropy constraint.
Subject to the additional constraint that ∑𝐼

𝑖=1 𝑚𝑖𝜋𝑖 = 1, we want to minimize (18.5) with respect to {𝑚𝑖}𝐼
𝑖=1 and to

maximize it with respect to ̃𝜃.
The minimizing probability distortions (likelihood ratios) are

�̃�𝑖(𝑐; ̃𝜃) = exp(−𝑢(𝑐𝑖)/ ̃𝜃)
∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/ ̃𝜃)

. (18.6)
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To compute the Lagrange multiplier ̃𝜃(𝑐, 𝜂), we must solve

∑
𝑖

𝜋𝑖�̃�𝑖(𝑐; ̃𝜃) log(�̃�𝑖(𝑐; ̃𝜃)) = 𝜂

or

∑
𝑖

𝜋𝑖
exp(−𝑢(𝑐𝑖)/ ̃𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/ ̃𝜃)
log[ exp(−𝑢(𝑐𝑖)/ ̃𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/ ̃𝜃)
] = 𝜂 (18.7)

for ̃𝜃 = ̃𝜃(𝑐; 𝜂).
For a fixed 𝜂, the ̃𝜃 that solves equation (18.7) is evidently a function of the consumption plan 𝑐.
With ̃𝜃(𝑐; 𝜂) in hand we can obtain worst-case probabilities as functions 𝜋𝑖�̃�𝑖(𝑐; 𝜂) of 𝜂.
The indirect (expected) utility function under constraint preferences is

𝐼
∑
𝑖=1

𝜋𝑖�̃�𝑖(𝑐𝑖; 𝜂)𝑢(𝑐𝑖) =
𝐼

∑
𝑖=1

𝜋𝑖 ⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

𝑢(𝑐𝑖). (18.8)

Entropy evaluated at the minimizing probability distortion (18.6) equals 𝐸�̃� log �̃� or
𝐼

∑
𝑖=1

⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

×

{− ̃𝜃−1𝑢(𝑐𝑖) + log(
𝐼

∑
𝑗=1

exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗)} 𝜋𝑖

= − ̃𝜃−1
𝐼

∑
𝑖=1

𝜋𝑖 ⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

𝑢(𝑐𝑖)

+ log(
𝐼

∑
𝑗=1

exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗) .

(18.9)

Expression (18.9) implies that

− ̃𝜃 log(
𝐼

∑
𝑗=1

exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗) =
𝐼

∑
𝑖=1

𝜋𝑖 ⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

𝑢(𝑐𝑖)

+ ̃𝜃(𝑐; 𝜂)
𝐼

∑
𝑖=1

log �̃�𝑖(𝑐; 𝜂)�̃�𝑖(𝑐; 𝜂)𝜋𝑖,
(18.10)

where the last term is ̃𝜃 times the entropy of the worst-case probability distribution.

18.6 Multiplier preferences

A decision maker is said to havemultiplier preferences when he ranks consumption plans 𝑐 according to

T𝑢(𝑐) ≐ min
{𝑚𝑖≥0}𝐼

𝑖=1

𝐼
∑
𝑖=1

𝜋𝑖𝑚𝑖[𝑢(𝑐𝑖) + 𝜃 log𝑚𝑖] (18.11)

where minimization is subject to
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 = 1.
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Here 𝜃 ∈ (𝜃, +∞) is a ‘penalty parameter’ that governs a ‘cost’ to an ‘evil alter ego’ who distorts probabilities by choosing
{𝑚𝑖}𝐼

𝑖=1.
Lower values of the penalty parameter 𝜃 express more apprehension about the baseline probability distribution 𝜋.
Following [Hansen and Sargent, 2001] and [Hansen and Sargent, 2008], we call the minimization problem on the right
side of (18.11) a multiplier problem.
The minimizing probability distortion that solves the multiplier problem is

�̂�𝑖(𝑐; 𝜃) = exp(−𝑢(𝑐𝑖)/𝜃)
∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/𝜃) . (18.12)

We can solve

∑
𝑖

𝜋𝑖
exp(−𝑢(𝑐𝑖)/𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/𝜃) log[
exp(−𝑢(𝑐𝑖)/𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/𝜃)] = ̃𝜂 (18.13)

to find an entropy level ̃𝜂(𝑐; 𝜃) associated with multiplier preferences with penalty parameter 𝜃 and allocation 𝑐.
For a fixed 𝜃, the ̃𝜂 that solves equation (18.13) is a function of the consumption plan 𝑐
The forms of expressions (18.6) and (18.12) are identical, but the Lagrange multiplier ̃𝜃 appears in (18.6), while the
penalty parameter 𝜃 appears in (18.12).
Formulas (18.6) and (18.12) show that worst-case probabilities are context specific in the sense that they depend on both
the utility function 𝑢 and the consumption plan 𝑐.
If we add 𝜃 times entropy under the worst-case model to expected utility under the worst-case model, we find that the
indirect expected utility function under multiplier preferences is

−𝜃 log(
𝐼

∑
𝑗=1

exp(−𝜃−1𝑢(𝑐𝑗))𝜋𝑗) . (18.14)

18.7 Risk-sensitive preferences

Substituting �̂�𝑖 into ∑𝐼
𝑖=1 𝜋𝑖�̂�𝑖[𝑢(𝑐𝑖) + 𝜃 log �̂�𝑖] gives the indirect utility function

T𝑢(𝑐) ≐ −𝜃 log
𝐼

∑
𝑖=1

𝜋𝑖 exp(−𝑢(𝑐𝑖)/𝜃). (18.15)

Here T𝑢 in (18.15) is the risk-sensitivity operator of [Jacobson, 1973], [Whittle, 1981], and [Whittle, 1990].
It defines a risk-sensitive preference ordering over plans 𝑐.
Because it is not linear in utilities 𝑢(𝑐𝑖) and probabilities 𝜋𝑖, it is said not to be separable across states.
Because risk-sensitive preferences use a unique probability distribution, they apparently express no model distrust or
ambiguity.
Instead, they make an additional adjustment for risk-aversion beyond that embedded in the curvature of 𝑢.
For 𝐼 = 2, 𝑐1 = 2, 𝑐2 = 1, 𝑢(𝑐) = ln 𝑐, the following figure plots the risk-sensitive criterion T𝑢(𝑐) defined in (18.15) as
a function of 𝜋1 for values of 𝜃 of 100 and .6.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:
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---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()

(continues on next page)
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195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:

(continues on next page)
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131 for a in artists:
--> 132 a.draw(renderer)

133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)

(continues on next page)
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1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)

(continues on next page)
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215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------

(continues on next page)
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FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
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338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)

(continues on next page)

366 Chapter 18. Risk and Model Uncertainty



Tools and Techniques for Computational Economics

(continued from previous page)

1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
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74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
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256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1000x800 with 1 Axes>

For large values of 𝜃, T𝑢(𝑐) is approximately linear in the probability 𝜋1, but for lower values of 𝜃, T𝑢(𝑐) has considerable
curvature as a function of 𝜋1.
Under expected utility, i.e., 𝜃 = +∞, T𝑢(𝑐) is linear in 𝜋1, but it is convex as a function of 𝜋1 when 𝜃 < +∞.
The two panels in the next figure below can help us to visualize the extra adjustment for risk that the risk-sensitive operator
entails.
This will help us understand how the T transformation works by envisioning what function is being averaged.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)
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-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)
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93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3034, in _AxesBase.draw(self, renderer)
3031 for spine in self.spines.values():
3032 artists.remove(spine)

-> 3034 self._update_title_position(renderer)
3036 if not self.axison:
3037 for _axis in self._axis_map.values():

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:2978, in _AxesBase._update_title_position(self, renderer)
2976 top = max(top, bb.ymax)
2977 if title.get_text():

-> 2978 ax.yaxis.get_tightbbox(renderer) # update offsetText
2979 if ax.yaxis.offsetText.get_text():
2980 bb = ax.yaxis.offsetText.get_tightbbox(renderer)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1336, in Axis.get_tightbbox(self, renderer, for_layout_only)
1333 renderer = self.figure._get_renderer()
1334 ticks_to_draw = self._update_ticks()

-> 1336 self._update_label_position(renderer)
1338 # go back to just this axis's tick labels
1339 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2609, in YAxis._update_label_position(self, renderer)
2605 return
2607 # get bounding boxes for this axis and any siblings
2608 # that have been set by `fig.align_ylabels()`

-> 2609 bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer)
2610 x, y = self.label.get_position()
2611 if self.label_position == 'left':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2161, in Axis._get_tick_boxes_siblings(self, renderer)
2159 axis = ax._axis_map[name]
2160 ticks_to_draw = axis._update_ticks()

-> 2161 tlb, tlb2 = axis._get_ticklabel_bboxes(ticks_to_draw, renderer)
2162 bboxes.extend(tlb)
2163 bboxes2.extend(tlb2)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)
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370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)

(continues on next page)
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1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
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154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3034, in _AxesBase.draw(self, renderer)
3031 for spine in self.spines.values():
3032 artists.remove(spine)

-> 3034 self._update_title_position(renderer)
3036 if not self.axison:
3037 for _axis in self._axis_map.values():

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:2978, in _AxesBase._update_title_position(self, renderer)
2976 top = max(top, bb.ymax)
2977 if title.get_text():

-> 2978 ax.yaxis.get_tightbbox(renderer) # update offsetText
2979 if ax.yaxis.offsetText.get_text():
2980 bb = ax.yaxis.offsetText.get_tightbbox(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1336, in Axis.get_tightbbox(self, renderer, for_layout_only)
1333 renderer = self.figure._get_renderer()
1334 ticks_to_draw = self._update_ticks()

-> 1336 self._update_label_position(renderer)
1338 # go back to just this axis's tick labels
1339 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2609, in YAxis._update_label_position(self, renderer)
2605 return
2607 # get bounding boxes for this axis and any siblings
2608 # that have been set by `fig.align_ylabels()`

-> 2609 bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer)
2610 x, y = self.label.get_position()
2611 if self.label_position == 'left':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:2161, in Axis._get_tick_boxes_siblings(self, renderer)
2159 axis = ax._axis_map[name]
2160 ticks_to_draw = axis._update_ticks()

-> 2161 tlb, tlb2 = axis._get_ticklabel_bboxes(ticks_to_draw, renderer)
2162 bboxes.extend(tlb)
2163 bboxes2.extend(tlb2)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
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1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)
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648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1600x600 with 2 Axes>

The panel on the right portrays how the transformation exp ( −𝑢(𝑐)
𝜃 ) sends 𝑢 (𝑐) to a new function by (i) flipping the sign,

and (ii) increasing curvature in proportion to 𝜃.
In the left panel, the red line is our tool for computing the mathematical expectation for different values of 𝜋.
The green lot indicates the mathematical expectation of exp ( −𝑢(𝑐)

𝜃 ) when 𝜋 = .5.
Notice that the distance between the green dot and the curve is greater in the transformed space than the original space
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as a result of additional curvature.
The inverse transformation 𝜃 log𝐸 [exp ( −𝑢(𝑐)

𝜃 )] generates the green dot on the left panel that constitutes the risk-
sensitive utility index.
The gap between the green dot and the red line on the left panel measures the additional adjustment for risk that risk-
sensitive preferences make relative to plain vanilla expected utility preferences.

18.7.1 Digression on moment generating functions

The risk-sensitivity operator T is intimately connected to a moment generating function.
In particular, a principal constinuent of the T operator, namely,

𝐸 exp(−𝑢(𝑐𝑖)/𝜃) =
𝐼

∑
𝑖=1

𝜋𝑖 exp(−𝑢(𝑐𝑖)/𝜃)

is evidently a moment generating function for the random variable 𝑢(𝑐𝑖), while

𝑔(𝜃−1) ≐ log
𝐼

∑
𝑖=1

𝜋𝑖 exp(−𝑢(𝑐𝑖)/𝜃)

is a cumulant generating function,

𝑔(𝜃−1) =
∞

∑
𝑗=1

𝜅𝑗
(−𝜃−1)𝑗

𝑗! .

where 𝜅𝑗 is the 𝑗th cumulant of the random variable 𝑢(𝑐).
Then

T𝑢(𝑐) = −𝜃𝑔(𝜃−1) = −𝜃
∞

∑
𝑗=1

𝜅𝑗
(−𝜃−1)𝑗

𝑗! .

In general, when 𝜃 < +∞, T𝑢(𝑐) depends on cumulants of all orders.
These statements extend to cases with continuous probability distributions for 𝑐 and therefore for 𝑢(𝑐).
For the special case 𝑢(𝑐) ∼ 𝒩(𝜇𝑢, 𝜎2

𝑢), 𝜅1 = 𝜇𝑢, 𝜅2 = 𝜎2
𝑢, and 𝜅𝑗 = 0 ∀𝑗 ≥ 3, so

T𝑢(𝑐) = 𝜇𝑢 − 1
2𝜃𝜎2

𝑢, (18.16)

which becomes expected utility 𝜇𝑢 when 𝜃−1 = 0.
The right side of equation (18.16) is a special case of stochastic differential utility preferences in which consumption
plans are ranked not just by their expected utilities 𝜇𝑢 but also the variances 𝜎2

𝑢 of their expected utilities.

18.8 Ex post Bayesian preferences

A decision maker is said to have ex post Bayesian preferences when he ranks consumption plans according to the
expected utility function

∑
𝑖

̂𝜋𝑖(𝑐∗)𝑢(𝑐𝑖) (18.17)

where ̂𝜋(𝑐∗) is the worst-case probability distribution associated with multiplier or constraint preferences evaluated at a
particular consumption plan 𝑐∗ = {𝑐∗

𝑖 }𝐼
𝑖=1.

At 𝑐∗, an ex post Bayesian’s indifference curves are tangent to those for multiplier and constraint preferences with appro-
priately chosen 𝜃 and 𝜂, respectively.
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18.9 Comparing preferences

For the special case in which 𝐼 = 2, 𝑐1 = 2, 𝑐2 = 1, 𝑢(𝑐) = ln 𝑐, and 𝜋1 = .5, the following two figures depict how
worst-case probabilities are determined under constraint and multiplier preferences, respectively.
The first figure graphs entropy as a function of ̂𝜋1.

It also plots expected utility under the twisted probability distribution, namely, ̂𝐸𝑢(𝑐) = 𝑢(𝑐2) + ̂𝜋1(𝑢(𝑐1) − 𝑢(𝑐2)),
which is evidently a linear function of ̂𝜋1.

The entropy constraint ∑𝐼
𝑖=1 𝜋𝑖𝑚𝑖 log𝑚𝑖 ≤ 𝜂 implies a convex set Π̂1 of ̂𝜋1’s that constrains the adversary who chooses

̂𝜋1, namely, the set of ̂𝜋1’s for which the entropy curve lies below the horizontal dotted line at an entropy level of 𝜂 = .25.
Unless 𝑢(𝑐1) = 𝑢(𝑐2), the ̂𝜋1 that minimizes ̂𝐸𝑢(𝑐) is at the boundary of the set Π̂1.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
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1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
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70 renderer.start_filter()
---> 72 return draw(artist, renderer)

73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
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73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
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251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
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1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)
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130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
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374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)
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293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1200x800 with 1 Axes>

The next figure shows the function ∑𝐼
𝑖=1 𝜋𝑖𝑚𝑖[𝑢(𝑐𝑖) + 𝜃 log𝑚𝑖] that is to be minimized in the multiplier problem.

The argument of the function is ̂𝜋1 = 𝑚1𝜋1.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)
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546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)
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385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)
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-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
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957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)
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361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
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--> 548 with Popen(*popenargs, **kwargs) as process:
549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
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172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:

(continues on next page)
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1314 renderer = self.figure._get_renderer()
-> 1315 return ([tick.label1.get_window_extent(renderer)

1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath) (continues on next page)
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648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1200x800 with 1 Axes>

Evidently, from this figure and also from formula (18.12), lower values of 𝜃 lead to lower, and thus more distorted,
minimizing values of ̂𝜋1.

The figure indicates how one can construct a Lagrange multiplier ̃𝜃 associated with a given entropy constraint 𝜂 and a
given consumption plan.
Thus, to draw the figure, we set the penalty parameter for multiplier preferences 𝜃 so that the minimizing ̂𝜋1 equals the
minimizing ̂𝜋1 for the constraint problem from the previous figure.
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The penalty parameter 𝜃 = .42 also equals the Lagrange multiplier ̃𝜃 on the entropy constraint for the constraint pref-
erences depicted in the previous figure because the ̂𝜋1 that minimizes the asymmetric curve associated with penalty
parameter 𝜃 = .42 is the same ̂𝜋1 associated with the intersection of the entropy curve and the entropy constraint dashed
vertical line.

18.10 Risk aversion and misspecification aversion

All five types of preferences use curvature of 𝑢 to express risk aversion.
Constraint preferences express concern about misspecification or ambiguity for short with a positive 𝜂 that circum-
scribes an entropy ball around an approximating probability distribution 𝜋, and aversion aversion to model misspecification
through minimization with respect to a likelihood ratio 𝑚.
Multiplier preferences express misspecification concerns with a parameter 𝜃 < +∞ that penalizes deviations from the
approximating model as measured by relative entropy, and they express aversion to misspecification concerns with mini-
mization over a probability distortion 𝑚.
By penalizing minimization over the likelihood ratio 𝑚, a decrease in 𝜃 represents an increase in ambiguity (or what
[Knight, 1921] called uncertainty) about the specification of the baseline approximating model {𝜋𝑖}𝐼

𝑖=1.
Formulas (18.6) assert that the decision maker acts as if he is pessimistic relative to an approximating model 𝜋.
It expresses what [Bucklew, 2004] [p. 27] calls a statistical version of Murphy’s law:

The probability of anything happening is in inverse ratio to its desirability.
The minimizing likelihood ratio �̂� slants worst-case probabilities ̂𝜋 exponentially to increase probabilities of events that
give lower utilities.
As expressed by the value function bound (18.19) to be displayed below, the decision maker uses pessimism instrumen-
tally to protect himself against model misspecification.

The penalty parameter 𝜃 for multipler preferences or the entropy level 𝜂 that determines the Lagrange multiplier ̃𝜃 for
constraint preferences controls how adversely the decision maker exponentially slants probabilities.
A decision rule is said to be undominated in the sense of Bayesian decision theory if there exists a probability distribution
𝜋 for which it is optimal.
A decision rule is said to be admissible if it is undominated.
[Hansen and Sargent, 2008] use ex post Bayesian preferences to show that robust decision rules are undominated and
therefore admissible.

18.11 Indifference curves

Indifference curves illuminate how concerns about robustness affect asset pricing and utility costs of fluctuations. For
𝐼 = 2, the slopes of the indifference curves for our five preference specifications are

• Expected utility:

𝑑𝑐2
𝑑𝑐1

= −𝜋1
𝜋2

𝑢′(𝑐1)
𝑢′(𝑐2)

• Constraint and ex post Bayesian preferences:

𝑑𝑐2
𝑑𝑐1

= − ̂𝜋1
̂𝜋2

𝑢′(𝑐1)
𝑢′(𝑐2)
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where ̂𝜋1, ̂𝜋2 are the minimizing probabilities computed from the worst-case distortions (18.6) from the constraint
problem at (𝑐1, 𝑐2).

• Multiplier and risk-sensitive preferences:
𝑑𝑐2
𝑑𝑐1

= −𝜋1
𝜋2

exp(−𝑢(𝑐1)/𝜃)
exp(−𝑢(𝑐2)/𝜃)

𝑢′(𝑐1)
𝑢′(𝑐2)

When 𝑐1 > 𝑐2, the exponential twisting formula (18.12) implies that ̂𝜋1 < 𝜋1, which in turn implies that the indifference
curves through (𝑐1, 𝑐2) for both constraint and multiplier preferences are flatter than the indifference curve associated
with expected utility preferences.
As we shall see soon when we discuss state price deflators, this gives rise to higher estimates of prices of risk.
For an example with 𝑢(𝑐) = ln 𝑐, 𝐼 = 2, and 𝜋1 = .5, the next two figures show indifference curves for expected utility,
multiplier, and constraint preferences.
The following figure shows indifference curves going through a point along the 45 degree line.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,

(continues on next page)

18.11. Indifference curves 403



Tools and Techniques for Computational Economics

(continued from previous page)

1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

(continues on next page)
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69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of

(continues on next page)
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68 # the passed-in argument do not mess up the cache.
---> 69 return _get_text_metrics_with_cache_impl(

70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,

(continues on next page)
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1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

(continues on next page)
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-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

(continues on next page)

410 Chapter 18. Risk and Model Uncertainty



Tools and Techniques for Computational Economics

(continued from previous page)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

(continues on next page)
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370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1600x800 with 2 Axes>

Kink at 45 degree line
Notice the kink in the indifference curve for constraint preferences at the 45 degree line.
To understand the source of the kink, consider how the Lagrange multiplier and worst-case probabilities vary with the
consumption plan under constraint preferences.
For fixed 𝜂, a given plan 𝑐, and a utility function increasing in 𝑐, worst case probabilities are fixed numbers ̂𝜋1 < .5
when 𝑐1 > 𝑐2 and ̂𝜋1 > .5 when 𝑐2 > 𝑐1.

This pattern makes the Lagrange multiplier ̃𝜃 vary discontinuously at ̂𝜋1 = .5.
The discontinuity in the worst case ̂𝜋1 at the 45 degree line accounts for the kink at the 45 degree line in an indifference
curve for constraint preferences associated with a given positive entropy constraint 𝜂.
The code for generating the preceding figure is somewhat intricate we formulate a root finding problem for finding indif-
ference curves.
Here is a brief literary description of the method we use.
Parameters

• Consumption bundle 𝑐 = (1, 1)
• Penalty parameter 𝜃 = 2
• Utility function 𝑢 = log
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• Probability vector 𝜋 = (0.5, 0.5)
Algorithm:

• Compute �̄� = 𝜋1𝑢 (𝑐1) + 𝜋2𝑢 (𝑐2)
• Given values for 𝑐1, solve for values of 𝑐2 such that �̄� = 𝑢 (𝑐1, 𝑐2):

– Expected utility: 𝑐2,𝐸𝑈 = 𝑢−1 ( �̄�−𝜋1𝑢(𝑐1)
𝜋2

)

– Multiplier preferences: solve �̄�−∑𝑖 𝜋𝑖
exp( −𝑢(𝑐𝑖)

𝜃 )

∑𝑗 exp( −𝑢(𝑐𝑗)
𝜃 )

(𝑢 (𝑐𝑖) + 𝜃 log( exp( −𝑢(𝑐𝑖)
𝜃 )

∑𝑗 exp( −𝑢(𝑐𝑗)
𝜃 )

)) = 0 numerically

– Constraint preference: solve �̄� − ∑𝑖 𝜋𝑖
exp( −𝑢(𝑐𝑖)

𝜃∗ )

∑𝑗 exp( −𝑢(𝑐𝑗)
𝜃∗ )

𝑢 (𝑐𝑖) = 0 numerically where 𝜃∗ solves

∑𝑖 𝜋𝑖
exp( −𝑢(𝑐𝑖)

𝜃∗ )

∑𝑗 exp(
−𝑢(𝑐𝑗)

𝜃∗ )
log( exp( −𝑢(𝑐𝑖)

𝜃∗ )

∑𝑗 exp( −𝑢(𝑐𝑗)
𝜃∗ )

) − 𝜂 = 0 numerically.

Remark: It seems that the constraint problem is hard to solve in its original form, i.e. by finding the distorting measure
that minimizes the expected utility.
It seems that viewing equation (18.7) as a root finding problem works much better.
But notice that equation (18.7) does not always have a solution.
Under 𝑢 = log, 𝑐1 = 𝑐2 = 1, we have:

∑
𝑖

𝜋𝑖
exp ( −𝑢(𝑐𝑖)

̃𝜃 )
∑𝑗 𝜋𝑗 exp( −𝑢(𝑐𝑗)

̃𝜃 )
log⎛⎜⎜

⎝

exp ( −𝑢(𝑐𝑖)
̃𝜃 )

∑𝑗 𝜋𝑗 exp( −𝑢(𝑐𝑗)
̃𝜃 )

⎞⎟⎟
⎠

= 0

Conjecture: when our numerical method fails it because the derivative of the objective doesn’t exist for our choice of
parameters.
Remark: It is tricky to get the algorithm to work properly for all values of 𝑐1. In particular, parameters were chosen with
graduate student descent.
Tangent indifference curves off 45 degree line
For a given 𝜂 and a given allocatin (𝑐1, 𝑐2) off the 45 degree line, by solving equations (18.7) and (18.13), we can find

̃𝜃(𝜂, 𝑐) and ̃𝜂(𝜃, 𝑐) that make indifference curves for multiplier and constraint preferences be tangent to one another.
The following figure shows indifference curves for multiplier and constraint preferences through a point off the 45 degree
line, namely, (𝑐(1), 𝑐(2)) = (3, 1), at which 𝜂 and 𝜃 are adjusted to render the indifference curves for constraint and
multiplier preferences tangent.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

(continues on next page)

18.11. Indifference curves 415



Tools and Techniques for Computational Economics

(continued from previous page)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
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70 renderer.start_filter()
---> 72 return draw(artist, renderer)

73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)

(continues on next page)

18.11. Indifference curves 417



Tools and Techniques for Computational Economics

(continued from previous page)

1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
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651 # todo: handle properties
--> 652 return self.get_texmanager().get_text_width_height_descent(

653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:
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File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
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161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:

(continues on next page)

422 Chapter 18. Risk and Model Uncertainty



Tools and Techniques for Computational Economics

(continued from previous page)

1314 renderer = self.figure._get_renderer()
-> 1315 return ([tick.label1.get_window_extent(renderer)

1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

(continues on next page)
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211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found
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Note that all three lines of the left graph intersect at (1, 3). While the intersection at (3, 1) is hard-coded, the intersection
at (1,3) arises from the computation, which confirms that the code seems to be working properly.
As we move along the (kinked) indifference curve for the constraint preferences for a given 𝜂, the worst-case probabilities
remain constant, but the Lagrange multiplier ̃𝜃 on the entropy constraint ∑𝐼

𝑖=1 𝑚𝑖 log𝑚𝑖 ≤ 𝜂 varies with (𝑐1, 𝑐2).
As we move along the (smooth) indifference curve for the multiplier preferences for a given penalty parameter 𝜃, the
implied entropy ̃𝜂 from equation (18.13) and the worst-case probabilities both change with (𝑐1, 𝑐2).
For constraint preferences, there is a kink in the indifference curve.
For ex post Bayesian preferences, there are effectively two sets of indifference curves depending on which side of the 45
degree line the (𝑐1, 𝑐2) endowment point sits.
There are two sets of indifference curves because, while the worst-case probabilities differ above and below the 45 degree
line, the idea of ex post Bayesian preferences is to use a single probability distribution to compute expected utilities for
all consumption bundles.
Indifference curves through point (𝑐1, 𝑐2) = (3, 1) for expected logarithmic utility (less curved smooth line), multiplier
(more curved line), constraint (solid line kinked at 45 degree line), and ex post Bayesian (dotted lines) preferences. The
worst-case probability ̂𝜋1 < .5 when 𝑐1 = 3 > 𝑐2 = 1 and ̂𝜋1 > .5 when 𝑐1 = 1 < 𝑐2 = 3.

18.12 State price deflators

Concerns about model uncertainty boost prices of risk that are embedded in state-price deflators. With complete markets,
let 𝑞𝑖 be the price of consumption in state 𝑖.
The budget set of a representative consumer having endowment ̄𝑐 = { ̄𝑐𝑖}𝐼

𝑖=1 is expressed by ∑𝐼
𝑖 𝑞𝑖(𝑐𝑖 − ̄𝑐𝑖) ≤ 0.

When a representative consumer has multiplier preferences, the state prices are

𝑞𝑖 = 𝜋𝑖�̂�𝑖𝑢′( ̄𝑐𝑖) = 𝜋𝑖(
exp(−𝑢( ̄𝑐𝑖)/𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢( ̄𝑐𝑗)/𝜃))𝑢′( ̄𝑐𝑖). (18.18)

The worst-case likelihood ratio �̂�𝑖 operates to increase prices 𝑞𝑖 in relatively low utility states 𝑖.
State prices agree under multiplier and constraint preferences when 𝜂 and 𝜃 are adjusted according to (18.7) or (18.13)
to make the indifference curves tangent at the endowment point.
The next figure can help us think about state-price deflators under our different preference orderings.
In this figure, budget line and indifference curves through point (𝑐1, 𝑐2) = (3, 1) for expected logarithmic utility, multi-
plier, constraint (kinked at 45 degree line), and ex post Bayesian (dotted lines) preferences.
Figure 2.7:

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

(continues on next page)
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--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together

(continues on next page)
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135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
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1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:
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--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
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342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)
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-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
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1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
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---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣
↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
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260 '{tex!r}\n\n'
(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1000x800 with 1 Axes>

Because budget constraints are linear, asset prices are identical under multiplier and constraint preferences for which 𝜃
and 𝜂 are adjusted to verify (18.7) or (18.13) at a given consumption endowment {𝑐𝑖}𝐼

𝑖=1.
However, as we note next, though they are tangent at the endowment point, the fact that indifference curves differ for
multiplier and constraint preferences means that certainty equivalent consumption compensations of the kind that [Lucas,
1987], [Hansen et al., 1999], [Tallarini, 2000], and [Barillas et al., 2009] used to measure the costs of business cycles
must differ.

18.12.1 Consumption-equivalent measures of uncertainty aversion

For each of our five types of preferences, the following figure allows us to construct a certainty equivalent point (𝑐∗, 𝑐∗)
on the 45 degree line that renders the consumer indifferent between it and the risky point (𝑐(1), 𝑐(2)) = (3, 1).
Figure 2.8:

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
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1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)
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130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
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374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

(continues on next page)
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293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)

(continues on next page)

18.12. State price deflators 441



Tools and Techniques for Computational Economics

(continued from previous page)

1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()

(continues on next page)
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154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)
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951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
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656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 800x800 with 1 Axes>

The figure indicates that the certainty equivalent level 𝑐∗ is higher for the consumer with expected utility preferences than
for the consumer with multiplier preferences, and that it is higher for the consumer with multiplier preferences than for
the consumer with constraint preferences.
The gap between these certainty equivalents measures the uncertainty aversion of the multiplier preferences or constraint
preferences consumer.
The gap between the expected value .5𝑐(1)+.5𝑐(2) at point A and the certainty equivalent for the expected utility decision
maker at point B is a measure of his risk aversion.
The gap between points 𝐵 and 𝐶 measures the multiplier preference consumer’s aversion to model uncertainty.
The gap between points B and D measures the constraint preference consumer’s aversion to model uncertainty.
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18.13 Iso-utility and iso-entropy curves and expansion paths

The following figures show iso-entropy and iso-utility lines for the special case in which 𝐼 = 3, 𝜋1 = .3, 𝜋2 = .4, and
the utility function is 𝑢(𝑐) = 𝑐1−𝛼

1−𝛼 with 𝛼 = 0 and 𝛼 = 3, respectively, for the fixed plan 𝑐(1) = 1, 𝑐(2) = 2, 𝑐(3) = 3.
The iso-utility lines are the level curves of

̂𝜋1𝑐1 + ̂𝜋2𝑐2 + (1 − ̂𝜋1 − ̂𝜋2)𝑐3

and are linear in ( ̂𝜋1, ̂𝜋2).
This is what it means to say ‘expected utility is linear in probabilities.’
Both figures plot the locus of points of tangency between the iso-entropy and the iso-utility curves that is traced out as
one varies 𝜃−1 in the interval [0, 2].
While the iso-entropy lines are identical in the two figures, these ‘expansion paths’ differ because the utility functions
differ, meaning that for a given 𝜃 and (𝑐1, 𝑐2, 𝑐3) triple, the worst-case probabilities ̂𝜋𝑖(𝜃) = 𝜋𝑖

exp(−𝑢(𝑐𝑖)/𝜃)
𝐸 exp(−𝑢(𝑐)/𝜃) differ as we

vary 𝜃, causing the associated entropies to differ.
Color bars:

• First color bar: variation in 𝜃
• Second color bar: variation in utility levels
• Third color bar: variation in entropy levels

/tmp/ipykernel_2218/3904427642.py:36: RuntimeWarning: invalid value encountered in␣
↪divide
m = m_unnormalized / (π * m_unnormalized).sum()

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

(continues on next page)

18.13. Iso-utility and iso-entropy curves and expansion paths 447



Tools and Techniques for Computational Economics

(continued from previous page)

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

(continues on next page)
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--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
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3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
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364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:
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File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)
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149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
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70 renderer.start_filter()
---> 72 return draw(artist, renderer)

73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
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1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
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651 # todo: handle properties
--> 652 return self.get_texmanager().get_text_width_height_descent(

653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1400x600 with 4 Axes>

/tmp/ipykernel_2218/3904427642.py:35: RuntimeWarning: overflow encountered in exp
m_unnormalized = np.exp(-u(c) / θ)

/tmp/ipykernel_2218/3904427642.py:36: RuntimeWarning: invalid value encountered in␣
↪divide
m = m_unnormalized / (π * m_unnormalized).sum()

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}: (continues on next page)
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---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

(continues on next page)
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RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite) (continues on next page)
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130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],

(continues on next page)
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1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

(continues on next page)
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--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found
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FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)

(continues on next page)
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338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)

(continues on next page)
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1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
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74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
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256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 1400x600 with 4 Axes>

18.14 Bounds on expected utility

Suppose that a decision maker wants a lower bound on expected utility ∑𝐼
𝑖=1 ̂𝜋𝑖𝑢(𝑐𝑖) that is satisfied for any distribution

̂𝜋 with relative entropy less than or equal to 𝜂.
An attractive feature of multiplier and constraint preferences is that they carry with them such a bound.
To show this, it is useful to collect some findings in the following string of inequalities associated with multiplier prefer-
ences:

T𝜃𝑢(𝑐) = −𝜃 log
𝐼

∑
𝑖=1

exp(−𝑢(𝑐𝑖)
𝜃 )𝜋𝑖

=
𝐼

∑
𝑖=1

𝑚∗
𝑖𝜋𝑖(𝑢(𝑐𝑖) + 𝜃 log𝑚∗

𝑖)

≤
𝐼

∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) + 𝜃
𝑖

∑
𝑖=1

𝑚𝑖 log𝑚𝑖𝜋𝑖

where 𝑚∗
𝑖 ∝ exp( −𝑢(𝑐𝑖)

𝜃 ) are the worst-case distortions to probabilities.

The inequality in the last line just asserts that minimizers minimize.
Therefore, we have the following useful bound:

𝐼
∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) ≥ T𝜃𝑢(𝑐) − 𝜃
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖. (18.19)

The left side is expected utility under the probability distribution {𝑚𝑖𝜋𝑖}.
The right side is a lower bound on expected utility under all distributions expressed as an affine function of relative entropy
∑𝐼

𝑖=1 𝜋𝑖𝑚𝑖 log𝑚𝑖.

The bound is attained for 𝑚𝑖 = 𝑚∗
𝑖 ∝ exp( −𝑢(𝑐𝑖)

𝜃 ).

The intercept in the bound is the risk-sensitive criterion T𝜃𝑢(𝑐), while the slope is the penalty parameter 𝜃.
Lowering 𝜃 does two things:

• it lowers the intercept T𝜃𝑢(𝑐), which makes the bound less informative for small values of entropy; and
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• it lowers the absolute value of the slope, which makes the bound more informative for larger values of relative
entropy ∑𝐼

𝑖=1 𝜋𝑖𝑚𝑖 log𝑚𝑖.
The following figure reports best-case and worst-case expected utilities.
We calculate the lines in this figure numerically by solving optimization problems with respect to the change of measure.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)
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-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
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3153 self.patch.draw(renderer)
-> 3154 mimage._draw_list_compositing_images(

3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
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1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
(continues on next page)
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---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣
↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
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260 '{tex!r}\n\n'
(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)

(continues on next page)
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1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)
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69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of

(continues on next page)
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68 # the passed-in argument do not mess up the cache.
---> 69 return _get_text_metrics_with_cache_impl(

70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

<Figure size 800x600 with 1 Axes>

In this figure, expected utility is on the co-ordinate axis while entropy is on the ordinate axis.
The lower curved line depicts expected utility under the worst-casemodel associated with each value of entropy 𝜂 recorded
on the ordinate axis, i.e., it is∑𝐼

𝑖=1 𝜋𝑖�̃�𝑖( ̃𝜃(𝑐, 𝜂))𝑢(𝑐𝑖), where �̃�𝑖( ̃𝜃(𝜂)) ∝ exp( −𝑢(𝑐𝑖)
̃𝜃 ) and ̃𝜃 is the Lagrange multiplier

associated with the constraint that entropy cannot exceed the value on the ordinate axis.
The higher curved line depicts expected utility under the best-case model indexed by the value of the Lagrange mul-
tiplier ̌𝜃 > 0 associated with each value of entropy less than or equal to 𝜂 recorded on the ordinate axis, i.e., it is
∑𝐼

𝑖=1 𝜋𝑖�̌�𝑖( ̌𝜃(𝜂))𝑢(𝑐𝑖) where �̌�𝑖( ̌𝜃(𝑐, 𝜂)) ∝ exp( 𝑢(𝑐𝑖)
̌𝜃 ).

(Here ̌𝜃 is the Lagrange multiplier associated with max-max expected utility.)
Points between these two curves are possible values of expected utility for some distribution with entropy less than or
equal to the value 𝜂 on the ordinate axis.
The straight line depicts the right side of inequality (18.19) for a particular value of the penalty parameter 𝜃.
As noted, when one lowers 𝜃, the intercept T𝜃𝑢(𝑐) and the absolute value of the slope both decrease.
Thus, as 𝜃 is lowered, T𝜃𝑢(𝑐) becomes a more conservative estimate of expected utility under the approximating model
𝜋.
However, as 𝜃 is lowered, the robustness bound (18.19) becomes more informative for sufficiently large values of entropy.
The slope of straight line depicting a bound is −𝜃 and the projection of the point of tangency with the curved depicting
the lower bound of expected utility is the entropy associated with that 𝜃 when it is interpreted as a Lagrange multiplier
on the entropy constraint in the constraint problem .
This is an application of the envelope theorem.
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18.15 Why entropy?

Beyond the helpful mathematical fact that it leads directly to convenient exponential twisting formulas (18.6) and (18.12)
for worst-case probability distortions, there are two related justifications for using entropy to measure discrepancies be-
tween probability distribution.
One arises from the role of entropy in statistical tests for discriminating between models.
The other comes from axioms.

18.15.1 Entropy and statistical detection

Robust control theory starts with a decision maker who has constructed a good baseline approximating model whose free
parameters he has estimated to fit historical data well.
The decision maker recognizes that actual outcomes might be generated by one of a vast number of other models that fit
the historical data nearly as well as his.
Therefore, he wants to evaluate outcomes under a set of alternative models that are plausible in the sense of being statis-
tically close to his model.
He uses relative entropy to quantify what close means.
[Anderson et al., 2003] and [Barillas et al., 2009]describe links between entropy and large deviations bounds on test
statistics for discriminating between models, in particular, statistics that describe the probability of making an error in
applying a likelihood ratio test to decide whether model A or model B generated a data record of length 𝑇 .
For a given sample size, an informative bound on the detection error probability is a function of the entropy parameter 𝜂
in constraint preferences. [Anderson et al., 2003] and [Barillas et al., 2009] use detection error probabilities to calibrate
reasonable values of 𝜂.
[Anderson et al., 2003] and [Hansen and Sargent, 2008] also use detection error probabilities to calibrate reasonable
values of the penalty parameter 𝜃 in multiplier preferences.
For a fixed sample size and a fixed 𝜃, they would calculate the worst-case �̂�𝑖(𝜃), an associated entropy 𝜂(𝜃), and an
associated detection error probability. In this way they build up a detection error probability as a function of 𝜃.
They then invert this function to calibrate 𝜃 to deliver a reasonable detection error probability.
To indicate outcomes from this approach, the following figure plots the histogram for U.S. quarterly consumption growth
along with a representative agent’s approximating density and a worst-case density that [Barillas et al., 2009] show imply
high measured market prices of risk even when a representative consumer has the unit coefficient of relative risk aversion
associated with a logarithmic one-period utility function.

Error in callback <function _draw_all_if_interactive at 0x7fb2b3488b80> (for post_
↪execute), with arguments args (),kwargs {}:

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/pyplot.

↪py:197, in _draw_all_if_interactive()
195 def _draw_all_if_interactive() -> None:
196 if matplotlib.is_interactive():

--> 197 draw_all()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/_pylab_
↪helpers.py:132, in Gcf.draw_all(cls, force)

130 for manager in cls.get_all_fig_managers():
131 if force or manager.canvas.figure.stale:

--> 132 manager.canvas.draw_idle()

(continues on next page)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:1893, in FigureCanvasBase.draw_idle(self, *args, **kwargs)
1891 if not self._is_idle_drawing:
1892 with self._idle_draw_cntx():

-> 1893 self.draw(*args, **kwargs)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:388, in FigureCanvasAgg.draw(self)

385 # Acquire a lock on the shared font cache.
386 with (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
387 else nullcontext()):

--> 388 self.figure.draw(self.renderer)
389 # A GUI class may be need to update a window using this draw, so
390 # don't forget to call the superclass.
391 super().draw()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
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70 renderer.start_filter()
---> 72 return draw(artist, renderer)

73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
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1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)

211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
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651 # todo: handle properties
--> 652 return self.get_texmanager().get_text_width_height_descent(

653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/

↪texmanager.py:250, in TexManager._run_checked_subprocess(cls, command, tex, cwd)
249 try:

--> 250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:
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File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:466, in check_
↪output(timeout, *popenargs, **kwargs)

464 kwargs['input'] = empty
--> 466 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,

467 **kwargs).stdout

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:548, in run(input,␣
↪capture_output, timeout, check, *popenargs, **kwargs)

546 kwargs['stderr'] = PIPE
--> 548 with Popen(*popenargs, **kwargs) as process:

549 try:

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1026, in Popen.__
↪init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_
↪fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_
↪signals, start_new_session, pass_fds, user, group, extra_groups, encoding,␣
↪errors, text, umask, pipesize, process_group)
1023 self.stderr = io.TextIOWrapper(self.stderr,
1024 encoding=encoding, errors=errors)

-> 1026 self._execute_child(args, executable, preexec_fn, close_fds,
1027 pass_fds, cwd, env,
1028 startupinfo, creationflags, shell,
1029 p2cread, p2cwrite,
1030 c2pread, c2pwrite,
1031 errread, errwrite,
1032 restore_signals,
1033 gid, gids, uid, umask,
1034 start_new_session, process_group)
1035 except:
1036 # Cleanup if the child failed starting.

File ~/miniconda3/envs/quantecon/lib/python3.11/subprocess.py:1950, in Popen._
↪execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env,␣
↪startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread,
↪ errwrite, restore_signals, gid, gids, uid, umask, start_new_session, process_
↪group)
1949 err_msg = os.strerror(errno_num)

-> 1950 raise child_exception_type(errno_num, err_msg, err_filename)
1951 raise child_exception_type(err_msg)

FileNotFoundError: [Errno 2] No such file or directory: 'latex'

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/

↪formatters.py:340, in BaseFormatter.__call__(self, obj)
338 pass
339 else:

--> 340 return printer(obj)
341 # Finally look for special method names
342 method = get_real_method(obj, self.print_method)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:169, in retina_figure(fig, base64, **kwargs)

160 def retina_figure(fig, base64=False, **kwargs):
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161 """format a figure as a pixel-doubled (retina) PNG
162
163 If `base64` is True, return base64-encoded str instead of raw bytes

(...)
167 base64 argument
168 """

--> 169 pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
170 # Make sure that retina_figure acts just like print_figure and returns
171 # None when the figure is empty.
172 if pngdata is None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/IPython/core/
↪pylabtools.py:152, in print_figure(fig, fmt, bbox_inches, base64, **kwargs)

149 from matplotlib.backend_bases import FigureCanvasBase
150 FigureCanvasBase(fig)

--> 152 fig.canvas.print_figure(bytes_io, **kw)
153 data = bytes_io.getvalue()
154 if fmt == 'svg':

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:2158, in FigureCanvasBase.print_figure(self, filename, dpi, facecolor,␣
↪edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists,␣
↪backend, **kwargs)
2155 # we do this instead of `self.figure.draw_without_rendering`
2156 # so that we can inject the orientation
2157 with getattr(renderer, "_draw_disabled", nullcontext)():

-> 2158 self.figure.draw(renderer)
2159 if bbox_inches:
2160 if bbox_inches == "tight":

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:95, in _finalize_rasterization.<locals>.draw_wrapper(artist, renderer, *args,␣
↪**kwargs)

93 @wraps(draw)
94 def draw_wrapper(artist, renderer, *args, **kwargs):

---> 95 result = draw(artist, renderer, *args, **kwargs)
96 if renderer._rasterizing:
97 renderer.stop_rasterizing()

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/figure.
↪py:3154, in Figure.draw(self, renderer)
3151 # ValueError can occur when resizing a window.
3153 self.patch.draw(renderer)

-> 3154 mimage._draw_list_compositing_images(
3155 renderer, self, artists, self.suppressComposite)
3157 for sfig in self.subfigs:
3158 sfig.draw(renderer)
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File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axes/_
↪base.py:3070, in _AxesBase.draw(self, renderer)
3067 if artists_rasterized:
3068 _draw_rasterized(self.figure, artists_rasterized, renderer)

-> 3070 mimage._draw_list_compositing_images(
3071 renderer, self, artists, self.figure.suppressComposite)
3073 renderer.close_group('axes')
3074 self.stale = False

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/image.
↪py:132, in _draw_list_compositing_images(renderer, parent, artists, suppress_
↪composite)

130 if not_composite or not has_images:
131 for a in artists:

--> 132 a.draw(renderer)
133 else:
134 # Composite any adjacent images together
135 image_group = []

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/artist.
↪py:72, in allow_rasterization.<locals>.draw_wrapper(artist, renderer)

69 if artist.get_agg_filter() is not None:
70 renderer.start_filter()

---> 72 return draw(artist, renderer)
73 finally:
74 if artist.get_agg_filter() is not None:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1388, in Axis.draw(self, renderer, *args, **kwargs)
1385 renderer.open_group(__name__, gid=self.get_gid())
1387 ticks_to_draw = self._update_ticks()

-> 1388 tlb1, tlb2 = self._get_ticklabel_bboxes(ticks_to_draw, renderer)
1390 for tick in ticks_to_draw:
1391 tick.draw(renderer)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in Axis._get_ticklabel_bboxes(self, ticks, renderer)
1313 if renderer is None:
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1314 renderer = self.figure._get_renderer()
-> 1315 return ([tick.label1.get_window_extent(renderer)

1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/axis.
↪py:1315, in <listcomp>(.0)
1313 if renderer is None:
1314 renderer = self.figure._get_renderer()

-> 1315 return ([tick.label1.get_window_extent(renderer)
1316 for tick in ticks if tick.label1.get_visible()],
1317 [tick.label2.get_window_extent(renderer)
1318 for tick in ticks if tick.label2.get_visible()])

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:956, in Text.get_window_extent(self, renderer, dpi)

951 raise RuntimeError(
952 "Cannot get window extent of text w/o renderer. You likely "
953 "want to call 'figure.draw_without_rendering()' first.")
955 with cbook._setattr_cm(self.figure, dpi=dpi):

--> 956 bbox, info, descent = self._get_layout(self._renderer)
957 x, y = self.get_unitless_position()
958 x, y = self.get_transform().transform((x, y))

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:373, in Text._get_layout(self, renderer)

370 ys = []
372 # Full vertical extent of font, including ascenders and descenders:

--> 373 _, lp_h, lp_d = _get_text_metrics_with_cache(
374 renderer, "lp", self._fontproperties,
375 ismath="TeX" if self.get_usetex() else False, dpi=self.figure.dpi)
376 min_dy = (lp_h - lp_d) * self._linespacing
378 for i, line in enumerate(lines):

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:69, in _get_text_metrics_with_cache(renderer, text, fontprop, ismath, dpi)

66 """Call ``renderer.get_text_width_height_descent``, caching the results."""
67 # Cached based on a copy of fontprop so that later in-place mutations of
68 # the passed-in argument do not mess up the cache.

---> 69 return _get_text_metrics_with_cache_impl(
70 weakref.ref(renderer), text, fontprop.copy(), ismath, dpi)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/text.
↪py:77, in _get_text_metrics_with_cache_impl(renderer_ref, text, fontprop, ismath,
↪ dpi)

73 @functools.lru_cache(4096)
74 def _get_text_metrics_with_cache_impl(
75 renderer_ref, text, fontprop, ismath, dpi):
76 # dpi is unused, but participates in cache invalidation (via the␣

↪renderer).
---> 77 return renderer_ref().get_text_width_height_descent(text, fontprop,␣

↪ismath)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backends/
↪backend_agg.py:213, in RendererAgg.get_text_width_height_descent(self, s, prop,␣
↪ismath)
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211 _api.check_in_list(["TeX", True, False], ismath=ismath)
212 if ismath == "TeX":

--> 213 return super().get_text_width_height_descent(s, prop, ismath)
215 if ismath:
216 ox, oy, width, height, descent, font_image = \
217 self.mathtext_parser.parse(s, self.dpi, prop)

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/backend_
↪bases.py:652, in RendererBase.get_text_width_height_descent(self, s, prop,␣
↪ismath)

648 fontsize = prop.get_size_in_points()
650 if ismath == 'TeX':
651 # todo: handle properties

--> 652 return self.get_texmanager().get_text_width_height_descent(
653 s, fontsize, renderer=self)
655 dpi = self.points_to_pixels(72)
656 if ismath:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:363, in TexManager.get_text_width_height_descent(cls, tex,␣
↪fontsize, renderer)

361 if tex.strip() == '':
362 return 0, 0, 0

--> 363 dvifile = cls.make_dvi(tex, fontsize)
364 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1
365 with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi:

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:295, in TexManager.make_dvi(cls, tex, fontsize)

293 with TemporaryDirectory(dir=cwd) as tmpdir:
294 tmppath = Path(tmpdir)

--> 295 cls._run_checked_subprocess(
296 ["latex", "-interaction=nonstopmode", "--halt-on-error",
297 f"--output-directory={tmppath.name}",
298 f"{texfile.name}"], tex, cwd=cwd)
299 (tmppath / Path(dvifile).name).replace(dvifile)
300 return dvifile

File ~/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪texmanager.py:254, in TexManager._run_checked_subprocess(cls, command, tex, cwd)

250 report = subprocess.check_output(
251 command, cwd=cwd if cwd is not None else cls._texcache,
252 stderr=subprocess.STDOUT)
253 except FileNotFoundError as exc:

--> 254 raise RuntimeError(
255 f'Failed to process string with tex because {command[0]} '
256 'could not be found') from exc
257 except subprocess.CalledProcessError as exc:
258 raise RuntimeError(
259 '{prog} was not able to process the following string:\n'
260 '{tex!r}\n\n'

(...)
267 exc=exc.output.decode('utf-8', 'backslashreplace'))
268 ) from None

RuntimeError: Failed to process string with tex because latex could not be found
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The density for the approximating model is log 𝑐𝑡+1 − log 𝑐𝑡 = 𝜇 + 𝜎𝑐𝜖𝑡+1 where 𝜖𝑡+1 ∼ 𝑁(0, 1) and 𝜇 and 𝜎𝑐 are
estimated by maximum likelihood from the U.S. quarterly data in the histogram over the period 1948.I-2006.IV.
The consumer’s value function under logarithmic utility implies that the worst-case model is log 𝑐𝑡+1 − log 𝑐𝑡 = (𝜇 +
𝜎𝑐𝑤) + 𝜎𝑐 ̃𝜖𝑡+1 where { ̃𝜖𝑡+1} is also a normalized Gaussian random sequence and where 𝑤 is calculated by setting a
detection error probability to .05.
The worst-case model appears to fit the histogram nearly as well as the approximating model.

18.15.2 Axiomatic justifications

Multiplier and constraint preferences are both special cases of what [Maccheroni et al., 2006] call variational preferences.
They provide an axiomatic foundation for variational preferences and describe how they express ambiguity aversion.
Constraint preferences are particular instances of the multiple priors model of [Gilboa and Schmeidler, 1989].
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CHAPTER

NINETEEN

ETYMOLOGY OF ENTROPY

This lecture describes and compares several notions of entropy.
Among the senses of entropy, we’ll encounter these

• A measure of uncertainty of a random variable advanced by Claude Shannon [Shannon and Weaver, 1949]
• A key object governing thermodynamics
• Kullback and Leibler’s measure of the statistical divergence between two probability distributions
• A measure of the volatility of stochastic discount factors that appear in asset pricing theory
• Measures of unpredictability that occur in classical Wiener-Kolmogorov linear prediction theory
• A frequency domain criterion for constructing robust decision rules

The concept of entropy plays an important role in robust control formulations described in this lecture Risk and Model
Uncertainty and in this lecture Robustness.

19.1 Information Theory

In information theory [Shannon and Weaver, 1949], entropy is a measure of the unpredictability of a random variable.
To illustrate things, let𝑋 be a discrete random variable taking values 𝑥1, … , 𝑥𝑛 with probabilities 𝑝𝑖 = Prob(𝑋 = 𝑥𝑖) ≥
0, ∑𝑖 𝑝𝑖 = 1.
Claude Shannon’s [Shannon and Weaver, 1949] definition of entropy is

𝐻(𝑝) = ∑
𝑖

𝑝𝑖 log𝑏(𝑝−1
𝑖 ) = − ∑

𝑖
𝑝𝑖 log𝑏(𝑝𝑖). (19.1)

where log𝑏 denotes the log function with base 𝑏.
Inspired by the limit

lim
𝑝↓0

𝑝 log 𝑝 = lim
𝑝↓0

log 𝑝
𝑝−1 = lim

𝑝↓0
𝑝 = 0,

we set 𝑝 log 𝑝 = 0 in equation (19.1).
Typical bases for the logarithm are 2, 𝑒, and 10.
In the information theory literature, logarithms of base 2, 𝑒, and 10 are associated with units of information called bits,
nats, and dits, respectively.
Shannon typically used base 2.
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19.2 A Measure of Unpredictability

For a discrete random variable 𝑋 with probability density 𝑝 = {𝑝𝑖}𝑛
𝑖=1, the surprisal for state 𝑖 is 𝑠𝑖 = log ( 1

𝑝𝑖
).

The quantity log ( 1
𝑝𝑖

) is called the surprisal because it is inversely related to the likelihood that state 𝑖 will occur.
Note that entropy 𝐻(𝑝) equals the expected surprisal

𝐻(𝑝) = ∑
𝑖

𝑝𝑖𝑠𝑖 = ∑
𝑖

𝑝𝑖 log( 1
𝑝𝑖

) = − ∑
𝑖

𝑝𝑖 log (𝑝𝑖) .

19.2.1 Example

Take a possibly unfair coin, so 𝑋 = {0, 1} with 𝑝 = Prob(𝑋 = 1) = 𝑝 ∈ [0, 1].
Then

𝐻(𝑝) = −(1 − 𝑝) log(1 − 𝑝) − 𝑝 log 𝑝.
Evidently,

𝐻′(𝑝) = log(1 − 𝑝) − log 𝑝 = 0
at 𝑝 = .5 and 𝐻″(𝑝) = − 1

1−𝑝 − 1
𝑝 < 0 for 𝑝 ∈ (0, 1).

So 𝑝 = .5 maximizes entropy, while entropy is minimized at 𝑝 = 0 and 𝑝 = 1.
Thus, among all coins, a fair coin is the most unpredictable.
See Fig. 19.1

19.2.2 Example

Take an 𝑛-sided possibly unfair die with a probability distribution {𝑝𝑖}𝑛
𝑖=1. The die is fair if 𝑝𝑖 = 1

𝑛 ∀𝑖.
Among all dies, a fair die maximizes entropy.
For a fair die, entropy equals 𝐻(𝑝) = −𝑛−1 ∑𝑖 log ( 1

𝑛 ) = log(𝑛).
To specify the expected number of bits needed to isolate the outcome of one roll of a fair 𝑛-sided die requires log2(𝑛)
bits of information.
For example, if 𝑛 = 2, log2(2) = 1.
For 𝑛 = 3, log2(3) = 1.585.

19.3 Mathematical Properties of Entropy

For a discrete random variable with probability vector 𝑝, entropy 𝐻(𝑝) is a function that satisfies
• 𝐻 is continuous.
• 𝐻 is symmetric: 𝐻(𝑝1, 𝑝2, … , 𝑝𝑛) = 𝐻(𝑝𝑟1

, … , 𝑝𝑟𝑛
) for any permutation 𝑟1, … , 𝑟𝑛 of 1, … , 𝑛.

• A uniform distribution maximizes 𝐻(𝑝): 𝐻(𝑝1, … , 𝑝𝑛) ≤ 𝐻( 1
𝑛 , … , 1

𝑛 ).
• Maximum entropy increases with the number of states: 𝐻( 1

𝑛 , … , 1
𝑛 ) ≤ 𝐻( 1

𝑛+1 , … , 1
𝑛+1 ).

• Entropy is not affected by events zero probability.
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Fig. 19.1: Entropy as a function of ̂𝜋1 when 𝜋1 = .5.

19.4 Conditional Entropy

Let (𝑋, 𝑌 ) be a bivariate discrete random vector with outcomes 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑚, respectively, occurring with
probability density 𝑝(𝑥𝑖, 𝑦𝑖).
Conditional entropy 𝐻(𝑋|𝑌 ) is defined as

𝐻(𝑋|𝑌 ) = ∑
𝑖,𝑗

𝑝(𝑥𝑖, 𝑦𝑗) log
𝑝(𝑦𝑗)

𝑝(𝑥𝑖, 𝑦𝑗)
. (19.2)

Here 𝑝(𝑦𝑗)
𝑝(𝑥𝑖,𝑦𝑗) , the reciprocal of the conditional probability of 𝑥𝑖 given 𝑦𝑗, can be defined as the conditional surprisal.

19.5 Independence as Maximum Conditional Entropy

Let 𝑚 = 𝑛 and [𝑥1, … , 𝑥𝑛] = [𝑦1, … , 𝑦𝑛].
Let ∑𝑗 𝑝(𝑥𝑖, 𝑦𝑗) = ∑𝑗 𝑝(𝑥𝑗, 𝑦𝑖) for all 𝑖, so that the marginal distributions of 𝑥 and 𝑦 are identical.
Thus, 𝑥 and 𝑦 are identically distributed, but they are not necessarily independent.
Consider the following problem: choose a joint distribution 𝑝(𝑥𝑖, 𝑦𝑗) to maximize conditional entropy (19.2) subject to
the restriction that 𝑥 and 𝑦 are identically distributed.
The conditional-entropy-maximizing 𝑝(𝑥𝑖, 𝑦𝑗) sets

𝑝(𝑥𝑖, 𝑦𝑗)
𝑝(𝑦𝑗)

= ∑
𝑗

𝑝(𝑥𝑖, 𝑦𝑗) = 𝑝(𝑥𝑖)∀𝑖.
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Thus, among all joint distributions with identical marginal distributions, the conditional entropy maximizing joint distri-
bution makes 𝑥 and 𝑦 be independent.

19.6 Thermodynamics

Josiah Willard Gibbs (see https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs) defined entropy as

𝑆 = −𝑘𝐵 ∑
𝑖

𝑝𝑖 log 𝑝𝑖 (19.3)

where 𝑝𝑖 is the probability of a micro state and 𝑘𝐵 is Boltzmann’s constant.
• The Boltzmann constant 𝑘𝑏 relates energy at the micro particle level with the temperature observed at the macro
level. It equals what is called a gas constant divided by an Avogadro constant.

The second law of thermodynamics states that the entropy of a closed physical system increases until 𝑆 defined in (19.3)
attains a maximum.

19.7 Statistical Divergence

Let 𝑋 be a discrete state space 𝑥1, … , 𝑥𝑛 and let 𝑝 and 𝑞 be two discrete probability distributions on 𝑋.
Assume that 𝑝𝑖

𝑞𝑡
∈ (0, ∞) for all 𝑖 for which 𝑝𝑖 > 0.

Then the Kullback-Leibler statistical divergence, also called relative entropy, is defined as

𝐷(𝑝|𝑞) = ∑
𝑖

𝑝𝑖 log(𝑝𝑖
𝑞𝑖

) = ∑
𝑖

𝑞𝑖 (𝑝𝑖
𝑞𝑖

) log(𝑝𝑖
𝑞𝑖

) . (19.4)

Evidently,

𝐷(𝑝|𝑞) = − ∑
𝑖

𝑝𝑖 log 𝑞𝑖 + ∑
𝑖

𝑝𝑖 log 𝑝𝑖

= 𝐻(𝑝, 𝑞) − 𝐻(𝑝),

where 𝐻(𝑝, 𝑞) = ∑𝑖 𝑝𝑖 log 𝑞𝑖 is the cross-entropy.
It is easy to verify, as we have done above, that 𝐷(𝑝|𝑞) ≥ 0 and that 𝐷(𝑝|𝑞) = 0 implies that 𝑝𝑖 = 𝑞𝑖 when 𝑞𝑖 > 0.

19.8 Continuous distributions

For a continuous random variable, Kullback-Leibler divergence between two densities 𝑝 and 𝑞 is defined as

𝐷(𝑝|𝑞) = ∫ 𝑝(𝑥) log(𝑝(𝑥)
𝑞(𝑥)) 𝑑 𝑥.
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19.9 Relative entropy and Gaussian distributions

We want to compute relative entropy for two continuous densities 𝜙 and ̂𝜙 when 𝜙 is 𝑁(0, 𝐼) and ̂𝜙 is 𝑁(𝑤, Σ), where
the covariance matrix Σ is nonsingular.
We seek a formula for

ent = ∫(log ̂𝜙(𝜀) − log𝜙(𝜀)) ̂𝜙(𝜀)𝑑𝜀.

Claim

ent = −1
2 log detΣ + 1

2𝑤′𝑤 + 1
2 trace(Σ − 𝐼). (19.5)

Proof
The log likelihood ratio is

log ̂𝜙(𝜀) − log𝜙(𝜀) = 1
2 [−(𝜀 − 𝑤)′Σ−1(𝜀 − 𝑤) + 𝜀′𝜀 − log detΣ] . (19.6)

Observe that

− ∫ 1
2(𝜀 − 𝑤)′Σ−1(𝜀 − 𝑤) ̂𝜙(𝜀)𝑑𝜀 = −1

2 trace(𝐼).

Applying the identity 𝜀 = 𝑤 + (𝜀 − 𝑤) gives
1
2𝜀′𝜀 = 1

2𝑤′𝑤 + 1
2(𝜀 − 𝑤)′(𝜀 − 𝑤) + 𝑤′(𝜀 − 𝑤).

Taking mathematical expectations

1
2 ∫ 𝜀′𝜀 ̂𝜙(𝜀)𝑑𝜀 = 1

2𝑤′𝑤 + 1
2 trace(Σ).

Combining terms gives

ent = ∫(log ̂𝜙 − log𝜙) ̂𝜙𝑑𝜀 = −1
2 log detΣ + 1

2𝑤′𝑤 + 1
2 trace(Σ − 𝐼). (19.7)

which agrees with equation (19.5). Notice the separate appearances of the mean distortion𝑤 and the covariance distortion
Σ − 𝐼 in equation (19.7).
Extension
Let 𝑁0 = 𝒩(𝜇0, Σ0) and 𝑁1 = 𝒩(𝜇1, Σ1) be two multivariate Gaussian distributions.
Then

𝐷(𝑁0|𝑁1) = 1
2 (trace(Σ−1

1 Σ0) + (𝜇1 − 𝜇0)′Σ−1
1 (𝜇1 − 𝜇0) − log(detΣ0

detΣ1
) − 𝑘) . (19.8)

19.10 Von Neumann Entropy

Let 𝑃 and 𝑄 be two positive-definite symmetric matrices.
A measure of the divergence between two 𝑃 and 𝑄 is

𝐷(𝑃 |𝑄) = trace(𝑃 ln𝑃 − 𝑃 ln𝑄 − 𝑃 + 𝑄)
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where the log of a matrix is defined here (https://en.wikipedia.org/wiki/Logarithm_of_a_matrix).
A density matrix 𝑃 from quantum mechanics is a positive definite matrix with trace 1.
The von Neumann entropy of a density matrix 𝑃 is

𝑆 = −trace(𝑃 ln𝑃)

19.11 Backus-Chernov-Zin Entropy

After flipping signs, [Backus et al., 2014] use Kullback-Leibler relative entropy as a measure of volatility of stochastic
discount factors that they assert is useful for characterizing features of both the data and various theoretical models of
stochastic discount factors.
Where 𝑝𝑡+1 is the physical or true measure, 𝑝∗

𝑡+1 is the risk-neutral measure, and 𝐸𝑡 denotes conditional expectation
under the 𝑝𝑡+1 measure, [Backus et al., 2014] define entropy as

𝐿𝑡(𝑝∗
𝑡+1/𝑝𝑡+1) = −𝐸𝑡 log(𝑝∗

𝑡+1/𝑝𝑡+1). (19.9)

Evidently, by virtue of the minus sign in equation (19.9),

𝐿𝑡(𝑝∗
𝑡+1/𝑝𝑡+1) = 𝐷𝐾𝐿,𝑡(𝑝∗

𝑡+1|𝑝𝑡+1), (19.10)

where 𝐷𝐾𝐿,𝑡 denotes conditional relative entropy.

Let𝑚𝑡+1 be a stochastic discount factor, 𝑟𝑡+1 a gross one-period return on a risky security, and (𝑟1
𝑡+1)−1 ≡ 𝑞1

𝑡 = 𝐸𝑡𝑚𝑡+1
be the reciprocal of a risk-free one-period gross rate of return. Then

𝐸𝑡(𝑚𝑡+1𝑟𝑡+1) = 1

[Backus et al., 2014] note that a stochastic discount factor satisfies

𝑚𝑡+1 = 𝑞1
𝑡 𝑝∗

𝑡+1/𝑝𝑡+1.

They derive the following entropy bound

𝐸𝐿𝑡(𝑚𝑡+1) ≥ 𝐸(log 𝑟𝑡+1 − log 𝑟1
𝑡+1)

which they propose as a complement to a Hansen-Jagannathan [Hansen and Jagannathan, 1991] bound.

19.12 Wiener-Kolmogorov Prediction Error Formula as Entropy

Let {𝑥𝑡}∞
𝑡=−∞ be a covariance stationary stochastic process with mean zero and spectral density 𝑆𝑥(𝜔).

The variance of 𝑥 is

𝜎2
𝑥 = ( 1

2𝜋 ) ∫
𝜋

−𝜋
𝑆𝑥(𝜔)𝑑𝜔.

As described in chapter XIV of [Sargent, 1987], the Wiener-Kolmogorov formula for the one-period ahead prediction
error is

𝜎2
𝜖 = exp [( 1

2𝜋 ) ∫
𝜋

−𝜋
log𝑆𝑥(𝜔)𝑑𝜔] . (19.11)
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Occasionally the logarithm of the one-step-ahead prediction error 𝜎2
𝜖 is called entropy because it measures unpredictabil-

ity.
Consider the following problem reminiscent of one described earlier.
Problem:
Among all covariance stationary univariate processes with unconditional variance 𝜎2

𝑥, find a process with maximal one-
step-ahead prediction error.
The maximizer is a process with spectral density

𝑆𝑥(𝜔) = 2𝜋𝜎2
𝑥.

Thus, among all univariate covariance stationary processes with variance 𝜎2
𝑥, a process with a flat spectral density is the

most uncertain, in the sense of one-step-ahead prediction error variance.
This no-patterns-across-time outcome for a temporally dependent process resembles the no-pattern-across-states outcome
for the static entropy maximizing coin or die in the classic information theoretic analysis described above.

19.13 Multivariate Processes

Let 𝑦𝑡 be an 𝑛 × 1 covariance stationary stochastic process with mean 0 with matrix covariogram 𝐶𝑦(𝑗) = 𝐸𝑦𝑡𝑦′
𝑡−𝑗 and

spectral density matrix

𝑆𝑦(𝜔) =
∞

∑
𝑗=−∞

𝑒−𝑖𝜔𝑗𝐶𝑦(𝑗), 𝜔 ∈ [−𝜋, 𝜋].

Let

𝑦𝑡 = 𝐷(𝐿)𝜖𝑡 ≡
∞

∑
𝑗=0

𝐷𝑗𝜖𝑡

be a Wold representation for 𝑦, where 𝐷(0)𝜖𝑡 is a vector of one-step-ahead errors in predicting 𝑦𝑡 conditional on the
infinite history 𝑦𝑡−1 = [𝑦𝑡−1, 𝑦𝑡−2, …] and 𝜖𝑡 is an 𝑛 × 1 vector of serially uncorrelated random disturbances with mean
zero and identity contemporaneous covariance matrix 𝐸𝜖𝑡𝜖′

𝑡 = 𝐼 .
Linear-least-squares predictors have one-step-ahead prediction error 𝐷(0)𝐷(0)′ that satisfies

log det[𝐷(0)𝐷(0)′] = ( 1
2𝜋 ) ∫

𝜋

−𝜋
log det[𝑆𝑦(𝜔)]𝑑𝜔. (19.12)

Being a measure of the unpredictability of an 𝑛×1 vector covariance stationary stochastic process, the left side of (19.12)
is sometimes called entropy.

19.14 Frequency Domain Robust Control

Chapter 8 of [Hansen and Sargent, 2008] adapts work in the control theory literature to define a frequency domain
entropy criterion for robust control as

∫
Γ
log det[𝜃𝐼 − 𝐺𝐹 (𝜁)′𝐺𝐹 (𝜁)]𝑑𝜆(𝜁), (19.13)

where 𝜃 ∈ (𝜃, +∞) is a positive robustness parameter and 𝐺𝐹 (𝜁) is a 𝜁-transform of the objective function.
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Hansen and Sargent [Hansen and Sargent, 2008] show that criterion (19.13) can be represented as

log det[𝐷(0)′𝐷(0)] = ∫
Γ
log det[𝜃𝐼 − 𝐺𝐹 (𝜁)′𝐺𝐹 (𝜁)]𝑑𝜆(𝜁), (19.14)

for an appropriate covariance stationary stochastic process derived from 𝜃, 𝐺𝐹 (𝜁).
This explains the monikermaximum entropy robust control for decision rules 𝐹 designed to maximize criterion (19.13).

19.15 Relative Entropy for a Continuous Random Variable

Let 𝑥 be a continuous random variable with density 𝜙(𝑥), and let 𝑔(𝑥) be a nonnegative random variable satisfying
∫ 𝑔(𝑥)𝜙(𝑥)𝑑𝑥 = 1.
The relative entropy of the distorted density ̂𝜙(𝑥) = 𝑔(𝑥)𝜙(𝑥) is defined as

ent(𝑔) = ∫ 𝑔(𝑥) log 𝑔(𝑥)𝜙(𝑥)𝑑𝑥.

Fig. 19.2 plots the functions 𝑔 log 𝑔 and 𝑔 − 1 over the interval 𝑔 ≥ 0.
That relative entropy ent(𝑔) ≥ 0 can be established by noting (a) that 𝑔 log 𝑔 ≥ 𝑔 − 1 (see Fig. 19.2) and (b) that under
𝜙, 𝐸𝑔 = 1.
Fig. 19.3 and Fig. 19.4 display aspects of relative entropy visually for a continuous random variable 𝑥 for two densities
with likelihood ratio 𝑔 ≥ 0.
Where the numerator density is 𝒩(0, 1), for two denominator Gaussian densities 𝒩(0, 1.5) and 𝒩(0, .95), respectively,
Fig. 19.3 and Fig. 19.4 display the functions 𝑔 log 𝑔 and 𝑔 − 1 as functions of 𝑥.

Fig. 19.2: The function 𝑔 log 𝑔 for 𝑔 ≥ 0. For a random variable 𝑔 with 𝐸𝑔 = 1, 𝐸𝑔 log 𝑔 ≥ 0.
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Fig. 19.3: Graphs of 𝑔 log 𝑔 and 𝑔 − 1 where 𝑔 is the ratio of the density of a 𝒩(0, 1) random variable to the density of
a 𝒩(0, 1.5) random variable. Under the 𝒩(0, 1.5) density, 𝐸𝑔 = 1.

Fig. 19.4: 𝑔 log 𝑔 and 𝑔 − 1 where 𝑔 is the ratio of the density of a 𝒩(0, 1) random variable to the density of a 𝒩(0, 1.5)
random variable. Under the 𝒩(0, 1.5) density, 𝐸𝑔 = 1.
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CHAPTER

TWENTY

ROBUSTNESS

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

20.1 Overview

This lecture modifies a Bellman equation to express a decision-maker’s doubts about transition dynamics.
His specification doubts make the decision-maker want a robust decision rule.
Robust means insensitive to misspecification of transition dynamics.
The decision-maker has a single approximating model.
He calls it approximating to acknowledge that he doesn’t completely trust it.
He fears that outcomes will actually be determined by another model that he cannot describe explicitly.
All that he knows is that the actual data-generating model is in some (uncountable) set of models that surrounds his
approximating model.
He quantifies the discrepancy between his approximating model and the genuine data-generating model by using a quantity
called entropy.
(We’ll explain what entropy means below)
He wants a decision rule that will work well enough no matter which of those other models actually governs outcomes.
This is what it means for his decision rule to be “robust to misspecification of an approximating model”.
This may sound like too much to ask for, but ….
… a secret weapon is available to design robust decision rules.
The secret weapon is max-min control theory.
A value-maximizing decision-maker enlists the aid of an (imaginary) value-minimizingmodel chooser to construct bounds
on the value attained by a given decision rule under different models of the transition dynamics.
The original decision-maker uses those bounds to construct a decision rule with an assured performance level, no matter
which model actually governs outcomes.

Note: In reading this lecture, please don’t think that our decision-maker is paranoid when he conducts a worst-case
analysis. By designing a rule that works well against a worst-case, his intention is to construct a rule that will work well
across a set of models.
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Let’s start with some imports:

import pandas as pd
import numpy as np
from scipy.linalg import eig
import matplotlib.pyplot as plt
import quantecon as qe

20.1.1 Sets of Models Imply Sets Of Values

Our “robust” decision-maker wants to know how well a given rule will work when he does not know a single transition
law ….
… he wants to know sets of values that will be attained by a given decision rule 𝐹 under a set of transition laws.
Ultimately, he wants to design a decision rule 𝐹 that shapes these sets of values in ways that he prefers.
With this in mind, consider the following graph, which relates to a particular decision problem to be explained below

The figure shows a value-entropy correspondence for a particular decision rule 𝐹 .
The shaded set is the graph of the correspondence, which maps entropy to a set of values associated with a set of models
that surround the decision-maker’s approximating model.
Here
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• Value refers to a sum of discounted rewards obtained by applying the decision rule 𝐹 when the state starts at some
fixed initial state 𝑥0.

• Entropy is a non-negative number that measures the size of a set of models surrounding the decision-maker’s ap-
proximating model.

– Entropy is zero when the set includes only the approximating model, indicating that the decision-maker com-
pletely trusts the approximating model.

– Entropy is bigger, and the set of surrounding models is bigger, the less the decision-maker trusts the approx-
imating model.

The shaded region indicates that for allmodels having entropy less than or equal to the number on the horizontal axis, the
value obtained will be somewhere within the indicated set of values.
Now let’s compare sets of values associated with two different decision rules, 𝐹𝑟 and 𝐹𝑏.
In the next figure,

• The red set shows the value-entropy correspondence for decision rule 𝐹𝑟.
• The blue set shows the value-entropy correspondence for decision rule 𝐹𝑏.

The blue correspondence is skinnier than the red correspondence.
This conveys the sense in which the decision rule 𝐹𝑏 is more robust than the decision rule 𝐹𝑟

• more robust means that the set of values is less sensitive to increasing misspecification as measured by entropy
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Notice that the less robust rule 𝐹𝑟 promises higher values for small misspecifications (small entropy).
(But it is more fragile in the sense that it is more sensitive to perturbations of the approximating model)
Below we’ll explain in detail how to construct these sets of values for a given 𝐹 , but for now ….
Here is a hint about the secret weapons we’ll use to construct these sets

• We’ll use some min problems to construct the lower bounds
• We’ll use some max problems to construct the upper bounds

We will also describe how to choose 𝐹 to shape the sets of values.
This will involve crafting a skinnier set at the cost of a lower level (at least for low values of entropy).

20.1.2 Inspiring Video

If youwant to understandmore about why one serious quantitative researcher is interested in this approach, we recommend
Lars Peter Hansen’s Nobel lecture.

20.1.3 Other References

Our discussion in this lecture is based on
• [Hansen and Sargent, 2000]
• [Hansen and Sargent, 2008]

20.2 The Model

For simplicity, we present ideas in the context of a class of problems with linear transition laws and quadratic objective
functions.
To fit in with our earlier lecture on LQ control, we will treat loss minimization rather than value maximization.
To begin, recall the infinite horizon LQ problem, where an agent chooses a sequence of controls {𝑢𝑡} to minimize

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡} (20.1)

subject to the linear law of motion

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 = 0, 1, 2, … (20.2)

As before,
• 𝑥𝑡 is 𝑛 × 1, 𝐴 is 𝑛 × 𝑛
• 𝑢𝑡 is 𝑘 × 1, 𝐵 is 𝑛 × 𝑘
• 𝑤𝑡 is 𝑗 × 1, 𝐶 is 𝑛 × 𝑗
• 𝑅 is 𝑛 × 𝑛 and 𝑄 is 𝑘 × 𝑘
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Here 𝑥𝑡 is the state, 𝑢𝑡 is the control, and 𝑤𝑡 is a shock vector.
For now, we take {𝑤𝑡} ∶= {𝑤𝑡}∞

𝑡=1 to be deterministic — a single fixed sequence.
We also allow for model uncertainty on the part of the agent solving this optimization problem.
In particular, the agent takes 𝑤𝑡 = 0 for all 𝑡 ≥ 0 as a benchmark model but admits the possibility that this model might
be wrong.
As a consequence, she also considers a set of alternative models expressed in terms of sequences {𝑤𝑡} that are “close” to
the zero sequence.
She seeks a policy that will do well enough for a set of alternative models whose members are pinned down by sequences
{𝑤𝑡}.
Soon we’ll quantify the quality of a model specification in terms of the maximal size of the expression
∑∞

𝑡=0 𝛽𝑡+1𝑤′
𝑡+1𝑤𝑡+1.

20.3 Constructing More Robust Policies

If our agent takes {𝑤𝑡} as a given deterministic sequence, then, drawing on intuition from earlier lectures on dynamic
programming, we can anticipate Bellman equations such as

𝐽𝑡−1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝐽𝑡(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑡)}

(Here 𝐽 depends on 𝑡 because the sequence {𝑤𝑡} is not recursive)
Our tool for studying robustness is to construct a rule that works well even if an adverse sequence {𝑤𝑡} occurs.
In our framework, “adverse” means “loss increasing”.
As we’ll see, this will eventually lead us to construct the Bellman equation

𝐽(𝑥) = min
𝑢
max

𝑤
{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 [𝐽(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) − 𝜃𝑤′𝑤]} (20.3)

Notice that we’ve added the penalty term −𝜃𝑤′𝑤.
Since 𝑤′𝑤 = ‖𝑤‖2, this term becomes influential when 𝑤 moves away from the origin.
The penalty parameter 𝜃 controls how much we penalize the maximizing agent for “harming” the minimizing agent.
By raising 𝜃 more and more, we more and more limit the ability of maximizing agent to distort outcomes relative to the
approximating model.
So bigger 𝜃 is implicitly associated with smaller distortion sequences {𝑤𝑡}.

20.3.1 Analyzing the Bellman Equation

So what does 𝐽 in (20.3) look like?
As with the ordinary LQ control model, 𝐽 takes the form 𝐽(𝑥) = 𝑥′𝑃𝑥 for some symmetric positive definite matrix 𝑃 .
One of our main tasks will be to analyze and compute the matrix 𝑃 .
Related tasks will be to study associated feedback rules for 𝑢𝑡 and 𝑤𝑡+1.
First, using matrix calculus, you will be able to verify that

max
𝑤

{(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤)′𝑃(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) − 𝜃𝑤′𝑤}
= (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢)

(20.4)
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where

𝒟(𝑃) ∶= 𝑃 + 𝑃𝐶(𝜃𝐼 − 𝐶′𝑃𝐶)−1𝐶′𝑃 (20.5)

and 𝐼 is a 𝑗 × 𝑗 identity matrix. Substituting this expression for the maximum into (20.3) yields

𝑥′𝑃𝑥 = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢)} (20.6)

Using similar mathematics, the solution to this minimization problem is 𝑢 = −𝐹𝑥 where 𝐹 ∶= (𝑄 +
𝛽𝐵′𝒟(𝑃)𝐵)−1𝛽𝐵′𝒟(𝑃)𝐴.
Substituting this minimizer back into (20.6) and working through the algebra gives 𝑥′𝑃𝑥 = 𝑥′ℬ(𝒟(𝑃))𝑥 for all 𝑥, or,
equivalently,

𝑃 = ℬ(𝒟(𝑃))

where 𝒟 is the operator defined in (20.5) and

ℬ(𝑃) ∶= 𝑅 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴 + 𝛽𝐴′𝑃𝐴

The operator ℬ is the standard (i.e., non-robust) LQ Bellman operator, and 𝑃 = ℬ(𝑃) is the standard matrix Riccati
equation coming from the Bellman equation — see this discussion.
Under some regularity conditions (see [Hansen and Sargent, 2008]), the operator ℬ ∘ 𝒟 has a unique positive definite
fixed point, which we denote below by ̂𝑃 .
A robust policy, indexed by 𝜃, is 𝑢 = − ̂𝐹𝑥 where

̂𝐹 ∶= (𝑄 + 𝛽𝐵′𝒟( ̂𝑃 )𝐵)−1𝛽𝐵′𝒟( ̂𝑃 )𝐴 (20.7)

We also define

�̂� ∶= (𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹 ) (20.8)

The interpretation of �̂� is that 𝑤𝑡+1 = �̂�𝑥𝑡 on the worst-case path of {𝑥𝑡}, in the sense that this vector is the maximizer
of (20.4) evaluated at the fixed rule 𝑢 = − ̂𝐹𝑥.
Note that ̂𝑃 , ̂𝐹 , �̂� are all determined by the primitives and 𝜃.
Note also that if 𝜃 is very large, then 𝒟 is approximately equal to the identity mapping.
Hence, when 𝜃 is large, ̂𝑃 and ̂𝐹 are approximately equal to their standard LQ values.
Furthermore, when 𝜃 is large, �̂� is approximately equal to zero.
Conversely, smaller 𝜃 is associated with greater fear of model misspecification and greater concern for robustness.

20.4 Robustness as Outcome of a Two-Person Zero-Sum Game

What we have done above can be interpreted in terms of a two-person zero-sum game in which ̂𝐹 , �̂� are Nash equilibrium
objects.
Agent 1 is our original agent, who seeks to minimize loss in the LQ program while admitting the possibility of misspeci-
fication.
Agent 2 is an imaginary malevolent player.
Agent 2’s malevolence helps the original agent to compute bounds on his value function across a set of models.
We begin with agent 2’s problem.
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20.4.1 Agent 2’s Problem

Agent 2
1. knows a fixed policy 𝐹 specifying the behavior of agent 1, in the sense that 𝑢𝑡 = −𝐹𝑥𝑡 for all 𝑡
2. responds by choosing a shock sequence {𝑤𝑡} from a set of paths sufficiently close to the benchmark sequence

{0, 0, 0, …}
A natural way to say “sufficiently close to the zero sequence” is to restrict the summed inner product ∑∞

𝑡=1 𝑤′
𝑡𝑤𝑡 to be

small.
However, to obtain a time-invariant recursive formulation, it turns out to be convenient to restrict a discounted inner
product

∞
∑
𝑡=1

𝛽𝑡𝑤′
𝑡𝑤𝑡 ≤ 𝜂 (20.9)

Now let 𝐹 be a fixed policy, and let 𝐽𝐹 (𝑥0,w) be the present-value cost of that policy given sequence w ∶= {𝑤𝑡} and
initial condition 𝑥0 ∈ ℝ𝑛.
Substituting −𝐹𝑥𝑡 for 𝑢𝑡 in (20.1), this value can be written as

𝐽𝐹 (𝑥0,w) ∶=
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 (20.10)

where

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1 (20.11)

and the initial condition 𝑥0 is as specified in the left side of (20.10).
Agent 2 chooses w to maximize agent 1’s loss 𝐽𝐹 (𝑥0,w) subject to (20.9).
Using a Lagrangian formulation, we can express this problem as

max
w

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 − 𝛽𝜃(𝑤′

𝑡+1𝑤𝑡+1 − 𝜂)}

where {𝑥𝑡} satisfied (20.11) and 𝜃 is a Lagrange multiplier on constraint (20.9).
For the moment, let’s take 𝜃 as fixed, allowing us to drop the constant 𝛽𝜃𝜂 term in the objective function, and hence write
the problem as

max
w

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 − 𝛽𝜃𝑤′

𝑡+1𝑤𝑡+1}

or, equivalently,

min
w

∞
∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 + 𝛽𝜃𝑤′

𝑡+1𝑤𝑡+1} (20.12)

subject to (20.11).
What’s striking about this optimization problem is that it is once again an LQ discounted dynamic programming problem,
with w = {𝑤𝑡} as the sequence of controls.
The expression for the optimal policy can be found by applying the usual LQ formula (see here).
We denote it by 𝐾(𝐹, 𝜃), with the interpretation 𝑤𝑡+1 = 𝐾(𝐹, 𝜃)𝑥𝑡.
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The remaining step for agent 2’s problem is to set 𝜃 to enforce the constraint (20.9), which can be done by choosing
𝜃 = 𝜃𝜂 such that

𝛽
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐾(𝐹, 𝜃𝜂)′𝐾(𝐹, 𝜃𝜂)𝑥𝑡 = 𝜂 (20.13)

Here 𝑥𝑡 is given by (20.11) — which in this case becomes 𝑥𝑡+1 = (𝐴 − 𝐵𝐹 + 𝐶𝐾(𝐹, 𝜃))𝑥𝑡.

20.4.2 Using Agent 2’s Problem to Construct Bounds on the Value Sets

The Lower Bound

Define the minimized object on the right side of problem (20.12) as 𝑅𝜃(𝑥0, 𝐹 ).
Because “minimizers minimize” we have

𝑅𝜃(𝑥0, 𝐹 ) ≤
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} + 𝛽𝜃

∞
∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1,

where 𝑥𝑡+1 = (𝐴 − 𝐵𝐹 + 𝐶𝐾(𝐹, 𝜃))𝑥𝑡 and 𝑥0 is a given initial condition.
This inequality in turn implies the inequality

𝑅𝜃(𝑥0, 𝐹 ) − 𝜃 ent ≤
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} (20.14)

where

ent ∶= 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1

The left side of inequality (20.14) is a straight line with slope −𝜃.
Technically, it is a “separating hyperplane”.
At a particular value of entropy, the line is tangent to the lower bound of values as a function of entropy.
In particular, the lower bound on the left side of (20.14) is attained when

ent = 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐾(𝐹, 𝜃)′𝐾(𝐹, 𝜃)𝑥𝑡 (20.15)

To construct the lower bound on the set of values associated with all perturbations w satisfying the entropy constraint
(20.9) at a given entropy level, we proceed as follows:

• For a given 𝜃, solve the minimization problem (20.12).
• Compute the minimizer 𝑅𝜃(𝑥0, 𝐹 ) and the associated entropy using (20.15).
• Compute the lower bound on the value function 𝑅𝜃(𝑥0, 𝐹 ) − 𝜃 ent and plot it against ent.
• Repeat the preceding three steps for a range of values of 𝜃 to trace out the lower bound.

Note: This procedure sweeps out a set of separating hyperplanes indexed by different values for the Lagrange multiplier
𝜃.
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The Upper Bound

To construct an upper bound we use a very similar procedure.
We simply replace the minimization problem (20.12) with the maximization problem

𝑉 ̃𝜃(𝑥0, 𝐹 ) = max
w

∞
∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 − 𝛽 ̃𝜃𝑤′

𝑡+1𝑤𝑡+1} (20.16)

where now ̃𝜃 > 0 penalizes the choice of w with larger entropy.

(Notice that ̃𝜃 = −𝜃 in problem (20.12))
Because “maximizers maximize” we have

𝑉 ̃𝜃(𝑥0, 𝐹 ) ≥
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} − 𝛽 ̃𝜃

∞
∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1

which in turn implies the inequality

𝑉 ̃𝜃(𝑥0, 𝐹 ) + ̃𝜃 ent ≥
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} (20.17)

where

ent ≡ 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1

The left side of inequality (20.17) is a straight line with slope ̃𝜃.
The upper bound on the left side of (20.17) is attained when

ent = 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐾(𝐹, ̃𝜃)′𝐾(𝐹, ̃𝜃)𝑥𝑡 (20.18)

To construct the upper bound on the set of values associated all perturbations w with a given entropy we proceed much
as we did for the lower bound

• For a given ̃𝜃, solve the maximization problem (20.16).
• Compute the maximizer 𝑉 ̃𝜃(𝑥0, 𝐹 ) and the associated entropy using (20.18).

• Compute the upper bound on the value function 𝑉 ̃𝜃(𝑥0, 𝐹 ) + ̃𝜃 ent and plot it against ent.

• Repeat the preceding three steps for a range of values of ̃𝜃 to trace out the upper bound.

Reshaping the Set of Values

Now in the interest of reshaping these sets of values by choosing 𝐹 , we turn to agent 1’s problem.

20.4.3 Agent 1’s Problem

Now we turn to agent 1, who solves

min
{𝑢𝑡}

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 − 𝛽𝜃𝑤′
𝑡+1𝑤𝑡+1} (20.19)
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where {𝑤𝑡+1} satisfies 𝑤𝑡+1 = 𝐾𝑥𝑡.
In other words, agent 1 minimizes

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡(𝑅 − 𝛽𝜃𝐾′𝐾)𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡} (20.20)

subject to

𝑥𝑡+1 = (𝐴 + 𝐶𝐾)𝑥𝑡 + 𝐵𝑢𝑡 (20.21)

Once again, the expression for the optimal policy can be found here — we denote it by ̃𝐹 .

20.4.4 Nash Equilibrium

Clearly, the ̃𝐹 we have obtained depends on 𝐾, which, in agent 2’s problem, depended on an initial policy 𝐹 .
Holding all other parameters fixed, we can represent this relationship as a mapping Φ, where

̃𝐹 = Φ(𝐾(𝐹 , 𝜃))

The map 𝐹 ↦ Φ(𝐾(𝐹 , 𝜃)) corresponds to a situation in which
1. agent 1 uses an arbitrary initial policy 𝐹
2. agent 2 best responds to agent 1 by choosing 𝐾(𝐹, 𝜃)
3. agent 1 best responds to agent 2 by choosing ̃𝐹 = Φ(𝐾(𝐹 , 𝜃))

As you may have already guessed, the robust policy ̂𝐹 defined in (20.7) is a fixed point of the mapping Φ.
In particular, for any given 𝜃,

1. 𝐾( ̂𝐹 , 𝜃) = �̂�, where �̂� is as given in (20.8)

2. Φ(�̂�) = ̂𝐹
A sketch of the proof is given in the appendix.

20.5 The Stochastic Case

Now we turn to the stochastic case, where the sequence {𝑤𝑡} is treated as an IID sequence of random vectors.
In this setting, we suppose that our agent is uncertain about the conditional probability distribution of 𝑤𝑡+1.
The agent takes the standard normal distribution 𝑁(0, 𝐼) as the baseline conditional distribution, while admitting the
possibility that other “nearby” distributions prevail.
These alternative conditional distributions of 𝑤𝑡+1 might depend nonlinearly on the history 𝑥𝑠, 𝑠 ≤ 𝑡.
To implement this idea, we need a notion of what it means for one distribution to be near another one.
Here we adopt a very useful measure of closeness for distributions known as the relative entropy, or Kullback-Leibler
divergence.
For densities 𝑝, 𝑞, the Kullback-Leibler divergence of 𝑞 from 𝑝 is defined as

𝐷𝐾𝐿(𝑝, 𝑞) ∶= ∫ ln [𝑝(𝑥)
𝑞(𝑥)] 𝑝(𝑥) 𝑑𝑥
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Using this notation, we replace (20.3) with the stochastic analog

𝐽(𝑥) = min
𝑢
max
𝜓∈𝒫

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 [∫ 𝐽(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) 𝜓(𝑑𝑤) − 𝜃𝐷𝐾𝐿(𝜓, 𝜙)]} (20.22)

Here 𝒫 represents the set of all densities on ℝ𝑛 and 𝜙 is the benchmark distribution 𝑁(0, 𝐼).
The distribution 𝜙 is chosen as the least desirable conditional distribution in terms of next period outcomes, while taking
into account the penalty term 𝜃𝐷𝐾𝐿(𝜓, 𝜙).
This penalty term plays a role analogous to the one played by the deterministic penalty 𝜃𝑤′𝑤 in (20.3), since it discourages
large deviations from the benchmark.

20.5.1 Solving the Model

Themaximization problem in (20.22) appears highly nontrivial— after all, we aremaximizing over an infinite dimensional
space consisting of the entire set of densities.
However, it turns out that the solution is tractable, and in fact also falls within the class of normal distributions.
First, we note that 𝐽 has the form 𝐽(𝑥) = 𝑥′𝑃𝑥 + 𝑑 for some positive definite matrix 𝑃 and constant real number 𝑑.
Moreover, it turns out that if (𝐼 − 𝜃−1𝐶′𝑃𝐶)−1 is nonsingular, then

max
𝜓∈𝒫

{∫(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤)′𝑃(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) 𝜓(𝑑𝑤) − 𝜃𝐷𝐾𝐿(𝜓, 𝜙)}

= (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢) + 𝜅(𝜃, 𝑃 )
(20.23)

where

𝜅(𝜃, 𝑃 ) ∶= 𝜃 ln[det(𝐼 − 𝜃−1𝐶′𝑃𝐶)−1]

and the maximizer is the Gaussian distribution

𝜓 = 𝑁 ((𝜃𝐼 − 𝐶′𝑃𝐶)−1𝐶′𝑃(𝐴𝑥 + 𝐵𝑢), (𝐼 − 𝜃−1𝐶′𝑃𝐶)−1) (20.24)

Substituting the expression for the maximum into Bellman equation (20.22) and using 𝐽(𝑥) = 𝑥′𝑃𝑥 + 𝑑 gives
𝑥′𝑃𝑥 + 𝑑 = min

𝑢
{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢) + 𝛽 [𝑑 + 𝜅(𝜃, 𝑃 )]} (20.25)

Since constant terms do not affect minimizers, the solution is the same as (20.6), leading to

𝑥′𝑃𝑥 + 𝑑 = 𝑥′ℬ(𝒟(𝑃))𝑥 + 𝛽 [𝑑 + 𝜅(𝜃, 𝑃 )]

To solve this Bellman equation, we take ̂𝑃 to be the positive definite fixed point of ℬ ∘ 𝒟.
In addition, we take ̂𝑑 as the real number solving 𝑑 = 𝛽 [𝑑 + 𝜅(𝜃, 𝑃 )], which is

̂𝑑 ∶= 𝛽
1 − 𝛽 𝜅(𝜃, 𝑃 ) (20.26)

The robust policy in this stochastic case is the minimizer in (20.25), which is once again 𝑢 = − ̂𝐹𝑥 for ̂𝐹 given by (20.7).
Substituting the robust policy into (20.24) we obtain the worst-case shock distribution:

𝑤𝑡+1 ∼ 𝑁(�̂�𝑥𝑡, (𝐼 − 𝜃−1𝐶′ ̂𝑃𝐶)−1)

where �̂� is given by (20.8).
Note that the mean of the worst-case shock distribution is equal to the same worst-case𝑤𝑡+1 as in the earlier deterministic
setting.
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20.5.2 Computing Other Quantities

Before turning to implementation, we briefly outline how to compute several other quantities of interest.

Worst-Case Value of a Policy

One thing we will be interested in doing is holding a policy fixed and computing the discounted loss associated with that
policy.
So let 𝐹 be a given policy and let 𝐽𝐹 (𝑥) be the associated loss, which, by analogy with (20.22), satisfies

𝐽𝐹 (𝑥) = max
𝜓∈𝒫

{𝑥′(𝑅 + 𝐹 ′𝑄𝐹)𝑥 + 𝛽 [∫ 𝐽𝐹 ((𝐴 − 𝐵𝐹)𝑥 + 𝐶𝑤) 𝜓(𝑑𝑤) − 𝜃𝐷𝐾𝐿(𝜓, 𝜙)]}

Writing 𝐽𝐹 (𝑥) = 𝑥′𝑃𝐹 𝑥 + 𝑑𝐹 and applying the same argument used to derive (20.23) we get

𝑥′𝑃𝐹 𝑥 + 𝑑𝐹 = 𝑥′(𝑅 + 𝐹 ′𝑄𝐹)𝑥 + 𝛽 [𝑥′(𝐴 − 𝐵𝐹)′𝒟(𝑃𝐹 )(𝐴 − 𝐵𝐹)𝑥 + 𝑑𝐹 + 𝜅(𝜃, 𝑃𝐹 )]

To solve this we take 𝑃𝐹 to be the fixed point

𝑃𝐹 = 𝑅 + 𝐹 ′𝑄𝐹 + 𝛽(𝐴 − 𝐵𝐹)′𝒟(𝑃𝐹 )(𝐴 − 𝐵𝐹)

and

𝑑𝐹 ∶= 𝛽
1 − 𝛽 𝜅(𝜃, 𝑃𝐹 ) = 𝛽

1 − 𝛽 𝜃 ln[det(𝐼 − 𝜃−1𝐶′𝑃𝐹 𝐶)−1] (20.27)

If you skip ahead to the appendix, you will be able to verify that −𝑃𝐹 is the solution to the Bellman equation in agent 2’s
problem discussed above—we use this in our computations.

20.6 Implementation

The QuantEcon.py package provides a class called RBLQ for implementation of robust LQ optimal control.
The code can be found on GitHub.
Here is a brief description of the methods of the class

• d_operator() and b_operator() implement 𝒟 and ℬ respectively
• robust_rule() and robust_rule_simple() both solve for the triple ̂𝐹 , �̂�, ̂𝑃 , as described in equations
(20.7) – (20.8) and the surrounding discussion

– robust_rule() is more efficient
– robust_rule_simple() is more transparent and easier to follow

• K_to_F() and F_to_K() solve the decision problems of agent 1 and agent 2 respectively
• compute_deterministic_entropy() computes the left-hand side of (20.13)
• evaluate_F() computes the loss and entropy associated with a given policy — see this discussion
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20.7 Application

Let us consider a monopolist similar to this one, but now facing model uncertainty.
The inverse demand function is 𝑝𝑡 = 𝑎0 − 𝑎1𝑦𝑡 + 𝑑𝑡.
where

𝑑𝑡+1 = 𝜌𝑑𝑡 + 𝜎𝑑𝑤𝑡+1, {𝑤𝑡}
IID∼ 𝑁(0, 1)

and all parameters are strictly positive.
The period return function for the monopolist is

𝑟𝑡 = 𝑝𝑡𝑦𝑡 − 𝛾 (𝑦𝑡+1 − 𝑦𝑡)2

2 − 𝑐𝑦𝑡

Its objective is to maximize expected discounted profits, or, equivalently, to minimize 𝔼 ∑∞
𝑡=0 𝛽𝑡(−𝑟𝑡).

To form a linear regulator problem, we take the state and control to be

𝑥𝑡 = ⎡⎢
⎣

1
𝑦𝑡
𝑑𝑡

⎤⎥
⎦

and 𝑢𝑡 = 𝑦𝑡+1 − 𝑦𝑡

Setting 𝑏 ∶= (𝑎0 − 𝑐)/2 we define

𝑅 = − ⎡⎢
⎣

0 𝑏 0
𝑏 −𝑎1 1/2
0 1/2 0

⎤⎥
⎦

and 𝑄 = 𝛾/2

For the transition matrices, we set

𝐴 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 𝜌

⎤⎥
⎦

, 𝐵 = ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝐶 = ⎡⎢
⎣

0
0
𝜎𝑑

⎤⎥
⎦

Our aim is to compute the value-entropy correspondences shown above.
The parameters are

𝑎0 = 100, 𝑎1 = 0.5, 𝜌 = 0.9, 𝜎𝑑 = 0.05, 𝛽 = 0.95, 𝑐 = 2, 𝛾 = 50.0

The standard normal distribution for 𝑤𝑡 is understood as the agent’s baseline, with uncertainty parameterized by 𝜃.
We compute value-entropy correspondences for two policies

1. The no concern for robustness policy 𝐹0, which is the ordinary LQ loss minimizer.
2. A “moderate” concern for robustness policy 𝐹𝑏, with 𝜃 = 0.02.

The code for producing the graph shown above, with blue being for the robust policy, is as follows

# Model parameters

a_0 = 100
a_1 = 0.5
ρ = 0.9
σ_d = 0.05
β = 0.95

(continues on next page)
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(continued from previous page)

c = 2
γ = 50.0

θ = 0.002
ac = (a_0 - c) / 2.0

# Define LQ matrices

R = np.array([[0., ac, 0.],
[ac, -a_1, 0.5],
[0., 0.5, 0.]])

R = -R # For minimization
Q = γ / 2

A = np.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., ρ]])

B = np.array([[0.],
[1.],
[0.]])

C = np.array([[0.],
[0.],
[σ_d]])

# ----------------------------------------------------------------------- #
# Functions
# ----------------------------------------------------------------------- #

def evaluate_policy(θ, F):

"""
Given θ (scalar, dtype=float) and policy F (array_like), returns the
value associated with that policy under the worst case path for {w_t},
as well as the entropy level.
"""

rlq = qe.RBLQ(Q, R, A, B, C, β, θ)
K_F, P_F, d_F, O_F, o_F = rlq.evaluate_F(F)
x0 = np.array([[1.], [0.], [0.]])
value = - x0.T @ P_F @ x0 - d_F
entropy = x0.T @ O_F @ x0 + o_F
return list(map(float, (value, entropy)))

def value_and_entropy(emax, F, bw, grid_size=1000):

"""
Compute the value function and entropy levels for a θ path
increasing until it reaches the specified target entropy value.

Parameters
==========
emax: scalar

The target entropy value

(continues on next page)
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(continued from previous page)

F: array_like
The policy function to be evaluated

bw: str
A string specifying whether the implied shock path follows best
or worst assumptions. The only acceptable values are 'best' and
'worst'.

Returns
=======
df: pd.DataFrame

A pandas DataFrame containing the value function and entropy
values up to the emax parameter. The columns are 'value' and
'entropy'.

"""

if bw == 'worst':
θs = 1 / np.linspace(1e-8, 1000, grid_size)

else:
θs = -1 / np.linspace(1e-8, 1000, grid_size)

df = pd.DataFrame(index=θs, columns=('value', 'entropy'))

for θ in θs:
df.loc[θ] = evaluate_policy(θ, F)
if df.loc[θ, 'entropy'] >= emax:

break

df = df.dropna(how='any')
return df

# ------------------------------------------------------------------------ #
# Main
# ------------------------------------------------------------------------ #

# Compute the optimal rule
optimal_lq = qe.LQ(Q, R, A, B, C, beta=β)
Po, Fo, do = optimal_lq.stationary_values()

# Compute a robust rule given θ
baseline_robust = qe.RBLQ(Q, R, A, B, C, β, θ)
Fb, Kb, Pb = baseline_robust.robust_rule()

# Check the positive definiteness of worst-case covariance matrix to
# ensure that θ exceeds the breakdown point
test_matrix = np.identity(Pb.shape[0]) - (C.T @ Pb @ C) / θ
eigenvals, eigenvecs = eig(test_matrix)
assert (eigenvals >= 0).all(), 'θ below breakdown point.'

emax = 1.6e6

optimal_best_case = value_and_entropy(emax, Fo, 'best')

(continues on next page)
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(continued from previous page)

robust_best_case = value_and_entropy(emax, Fb, 'best')
optimal_worst_case = value_and_entropy(emax, Fo, 'worst')
robust_worst_case = value_and_entropy(emax, Fb, 'worst')

fig, ax = plt.subplots()

ax.set_xlim(0, emax)
ax.set_ylabel("Value")
ax.set_xlabel("Entropy")
ax.grid()

for axis in 'x', 'y':
plt.ticklabel_format(style='sci', axis=axis, scilimits=(0, 0))

plot_args = {'lw': 2, 'alpha': 0.7}

colors = 'r', 'b'

df_pairs = ((optimal_best_case, optimal_worst_case),
(robust_best_case, robust_worst_case))

class Curve:

def __init__(self, x, y):
self.x, self.y = x, y

def __call__(self, z):
return np.interp(z, self.x, self.y)

for c, df_pair in zip(colors, df_pairs):
curves = []
for df in df_pair:

# Plot curves
x, y = df['entropy'], df['value']
x, y = (np.asarray(a, dtype='float') for a in (x, y))
egrid = np.linspace(0, emax, 100)
curve = Curve(x, y)
print(ax.plot(egrid, curve(egrid), color=c, **plot_args))
curves.append(curve)

# Color fill between curves
ax.fill_between(egrid,

curves[0](egrid),
curves[1](egrid),
color=c, alpha=0.1)

plt.show()

/tmp/ipykernel_2492/154157873.py:51: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
return list(map(float, (value, entropy)))

/tmp/ipykernel_2492/154157873.py:51: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)

(continues on next page)
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(continued from previous page)

return list(map(float, (value, entropy)))
/tmp/ipykernel_2492/154157873.py:51: DeprecationWarning: Conversion of an array␣

↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
return list(map(float, (value, entropy)))

/tmp/ipykernel_2492/154157873.py:51: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
return list(map(float, (value, entropy)))

[<matplotlib.lines.Line2D object at 0x7fce8234d5d0>]
[<matplotlib.lines.Line2D object at 0x7fce810208d0>]
[<matplotlib.lines.Line2D object at 0x7fce81021810>]
[<matplotlib.lines.Line2D object at 0x7fce81021bd0>]

Here’s another such figure, with 𝜃 = 0.002 instead of 0.02
Can you explain the different shape of the value-entropy correspondence for the robust policy?
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20.8 Appendix

We sketch the proof only of the first claim in this section, which is that, for any given 𝜃, 𝐾( ̂𝐹 , 𝜃) = �̂�, where �̂� is as
given in (20.8).
This is the content of the next lemma.
Lemma. If ̂𝑃 is the fixed point of the map ℬ ∘ 𝒟 and ̂𝐹 is the robust policy as given in (20.7), then

𝐾( ̂𝐹 , 𝜃) = (𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹) (20.28)

Proof: As a first step, observe that when 𝐹 = ̂𝐹 , the Bellman equation associated with the LQ problem (20.11) – (20.12)
is

̃𝑃 = −𝑅 − ̂𝐹 ′𝑄 ̂𝐹 − 𝛽2(𝐴 − 𝐵 ̂𝐹 )′ ̃𝑃𝐶(𝛽𝜃𝐼 + 𝛽𝐶′ ̃𝑃𝐶)−1𝐶′ ̃𝑃 (𝐴 − 𝐵 ̂𝐹) + 𝛽(𝐴 − 𝐵 ̂𝐹)′ ̃𝑃 (𝐴 − 𝐵 ̂𝐹) (20.29)

(revisit this discussion if you don’t know where (20.29) comes from) and the optimal policy is

𝑤𝑡+1 = −𝛽(𝛽𝜃𝐼 + 𝛽𝐶′ ̃𝑃𝐶)−1𝐶′ ̃𝑃 (𝐴 − 𝐵 ̂𝐹)𝑥𝑡

Suppose for a moment that − ̂𝑃 solves the Bellman equation (20.29).
In this case, the policy becomes

𝑤𝑡+1 = (𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹)𝑥𝑡

which is exactly the claim in (20.28).
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Hence it remains only to show that − ̂𝑃 solves (20.29), or, in other words,

̂𝑃 = 𝑅 + ̂𝐹 ′𝑄 ̂𝐹 + 𝛽(𝐴 − 𝐵 ̂𝐹)′ ̂𝑃𝐶(𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹) + 𝛽(𝐴 − 𝐵 ̂𝐹 )′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹 )

Using the definition of 𝒟, we can rewrite the right-hand side more simply as

𝑅 + ̂𝐹 ′𝑄 ̂𝐹 + 𝛽(𝐴 − 𝐵 ̂𝐹 )′𝒟( ̂𝑃 )(𝐴 − 𝐵 ̂𝐹)

Although it involves a substantial amount of algebra, it can be shown that the latter is just ̂𝑃 .

Hint: Use the fact that ̂𝑃 = ℬ(𝒟( ̂𝑃 ))
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CHAPTER

TWENTYONE

ROBUST MARKOV PERFECT EQUILIBRIUM

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

21.1 Overview

This lecture describes a Markov perfect equilibrium with robust agents.
We focus on special settings with

• two players
• quadratic payoff functions
• linear transition rules for the state vector

These specifications simplify calculations and allow us to give a simple example that illustrates basic forces.
This lecture is based on ideas described in chapter 15 of [Hansen and Sargent, 2008] and in Markov perfect equilibrium
and Robustness.
Let’s start with some standard imports:

import numpy as np
import quantecon as qe
from scipy.linalg import solve
import matplotlib.pyplot as plt

21.1.1 Basic Setup

Decisions of two agents affect the motion of a state vector that appears as an argument of payoff functions of both agents.
As described inMarkov perfect equilibrium, when decision-makers have no concerns about the robustness of their decision
rules to misspecifications of the state dynamics, a Markov perfect equilibrium can be computed via backward recursion
on two sets of equations

• a pair of Bellman equations, one for each agent.
• a pair of equations that express linear decision rules for each agent as functions of that agent’s continuation value
function as well as parameters of preferences and state transition matrices.
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This lecture shows how a similar equilibrium concept and similar computational procedures apply when we impute con-
cerns about robustness to both decision-makers.
A Markov perfect equilibrium with robust agents will be characterized by

• a pair of Bellman equations, one for each agent.
• a pair of equations that express linear decision rules for each agent as functions of that agent’s continuation value
function as well as parameters of preferences and state transition matrices.

• a pair of equations that express linear decision rules for worst-case shocks for each agent as functions of that agent’s
continuation value function as well as parameters of preferences and state transition matrices.

Below, we’ll construct a robust firms version of the classic duopoly model with adjustment costs analyzed in Markov
perfect equilibrium.

21.2 Linear Markov Perfect Equilibria with Robust Agents

As we saw in Markov perfect equilibrium, the study of Markov perfect equilibria in dynamic games with two players
leads us to an interrelated pair of Bellman equations.
In linear quadratic dynamic games, these “stacked Bellman equations” become “stacked Riccati equations” with a tractable
mathematical structure.

21.2.1 Modified Coupled Linear Regulator Problems

We consider a general linear quadratic regulator game with two players, each of whom fears model misspecifications.
We often call the players agents.
The agents share a common baseline model for the transition dynamics of the state vector

• this is a counterpart of a ‘rational expectations’ assumption of shared beliefs
But now one or more agents doubt that the baseline model is correctly specified.
The agents express the possibility that their baseline specification is incorrect by adding a contribution 𝐶𝑣𝑖𝑡 to the time 𝑡
transition law for the state

• 𝐶 is the usual volatility matrix that appears in stochastic versions of optimal linear regulator problems.
• 𝑣𝑖𝑡 is a possibly history-dependent vector of distortions to the dynamics of the state that agent 𝑖 uses to represent
misspecification of the original model.

For convenience, we’ll start with a finite horizon formulation, where 𝑡0 is the initial date and 𝑡1 is the common terminal
date.
Player 𝑖 takes a sequence {𝑢−𝑖𝑡} as given and chooses a sequence {𝑢𝑖𝑡} to minimize and {𝑣𝑖𝑡} to maximize

𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡 + 𝑢′
−𝑖𝑡𝑆𝑖𝑢−𝑖𝑡 + 2𝑥′

𝑡𝑊𝑖𝑢𝑖𝑡 + 2𝑢′
−𝑖𝑡𝑀𝑖𝑢𝑖𝑡 − 𝜃𝑖𝑣′

𝑖𝑡𝑣𝑖𝑡} (21.1)

while thinking that the state evolves according to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 + 𝐶𝑣𝑖𝑡 (21.2)

Here
• 𝑥𝑡 is an 𝑛 × 1 state vector, 𝑢𝑖𝑡 is a 𝑘𝑖 × 1 vector of controls for player 𝑖, and
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• 𝑣𝑖𝑡 is an ℎ × 1 vector of distortions to the state dynamics that concern player 𝑖
• 𝑅𝑖 is 𝑛 × 𝑛
• 𝑆𝑖 is 𝑘−𝑖 × 𝑘−𝑖

• 𝑄𝑖 is 𝑘𝑖 × 𝑘𝑖

• 𝑊𝑖 is 𝑛 × 𝑘𝑖

• 𝑀𝑖 is 𝑘−𝑖 × 𝑘𝑖

• 𝐴 is 𝑛 × 𝑛
• 𝐵𝑖 is 𝑛 × 𝑘𝑖

• 𝐶 is 𝑛 × ℎ
• 𝜃𝑖 ∈ [𝜃𝑖, +∞] is a scalar multiplier parameter of player 𝑖

If 𝜃𝑖 = +∞, player 𝑖 completely trusts the baseline model.
If 𝜃𝑖 <∞, player 𝑖 suspects that some other unspecified model actually governs the transition dynamics.
The term 𝜃𝑖𝑣′

𝑖𝑡𝑣𝑖𝑡 is a time 𝑡 contribution to an entropy penalty that an (imaginary) loss-maximizing agent inside agent
𝑖’s mind charges for distorting the law of motion in a way that harms agent 𝑖.

• the imaginary loss-maximizing agent helps the loss-minimizing agent by helping him construct bounds on the
behavior of his decision rule over a large set of alternative models of state transition dynamics.

21.2.2 Computing Equilibrium

We formulate a linear robust Markov perfect equilibrium as follows.
Player 𝑖 employs linear decision rules 𝑢𝑖𝑡 = −𝐹𝑖𝑡𝑥𝑡, where 𝐹𝑖𝑡 is a 𝑘𝑖 × 𝑛 matrix.
Player 𝑖’s malevolent alter ego employs decision rules 𝑣𝑖𝑡 = 𝐾𝑖𝑡𝑥𝑡 where 𝐾𝑖𝑡 is an ℎ × 𝑛 matrix.
A robust Markov perfect equilibrium is a pair of sequences {𝐹1𝑡, 𝐹2𝑡} and a pair of sequences {𝐾1𝑡, 𝐾2𝑡} over 𝑡 =
𝑡0, … , 𝑡1 − 1 that satisfy

• {𝐹1𝑡, 𝐾1𝑡} solves player 1’s robust decision problem, taking {𝐹2𝑡} as given, and
• {𝐹2𝑡, 𝐾2𝑡} solves player 2’s robust decision problem, taking {𝐹1𝑡} as given.

If we substitute 𝑢2𝑡 = −𝐹2𝑡𝑥𝑡 into (21.1) and (21.2), then player 1’s problem becomes minimization-maximization of

𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡Π1𝑡𝑥𝑡 + 𝑢′

1𝑡𝑄1𝑢1𝑡 + 2𝑢′
1𝑡Γ1𝑡𝑥𝑡 − 𝜃1𝑣′

1𝑡𝑣1𝑡} (21.3)

subject to

𝑥𝑡+1 = Λ1𝑡𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐶𝑣1𝑡 (21.4)

where
• Λ𝑖𝑡 ∶= 𝐴 − 𝐵−𝑖𝐹−𝑖𝑡

• Π𝑖𝑡 ∶= 𝑅𝑖 + 𝐹 ′
−𝑖𝑡𝑆𝑖𝐹−𝑖𝑡

• Γ𝑖𝑡 ∶= 𝑊 ′
𝑖 − 𝑀 ′

𝑖 𝐹−𝑖𝑡

21.2. Linear Markov Perfect Equilibria with Robust Agents 525



Tools and Techniques for Computational Economics

This is an LQ robust dynamic programming problem of the type studied in the Robustness lecture, which can be solved
by working backward.
Maximization with respect to distortion 𝑣1𝑡 leads to the following version of the 𝒟 operator from the Robustness lecture,
namely

𝒟1(𝑃 ) ∶= 𝑃 + 𝑃𝐶(𝜃1𝐼 − 𝐶′𝑃𝐶)−1𝐶′𝑃 (21.5)

The matrix 𝐹1𝑡 in the policy rule 𝑢1𝑡 = −𝐹1𝑡𝑥𝑡 that solves agent 1’s problem satisfies

𝐹1𝑡 = (𝑄1 + 𝛽𝐵′
1𝒟1(𝑃1𝑡+1)𝐵1)−1(𝛽𝐵′

1𝒟1(𝑃1𝑡+1)Λ1𝑡 + Γ1𝑡) (21.6)

where 𝑃1𝑡 solves the matrix Riccati difference equation

𝑃1𝑡 = Π1𝑡 − (𝛽𝐵′
1𝒟1(𝑃1𝑡+1)Λ1𝑡 + Γ1𝑡)′(𝑄1 + 𝛽𝐵′

1𝒟1(𝑃1𝑡+1)𝐵1)−1(𝛽𝐵′
1𝒟1(𝑃1𝑡+1)Λ1𝑡 + Γ1𝑡)+

𝛽Λ′
1𝑡𝒟1(𝑃1𝑡+1)Λ1𝑡

(21.7)

Similarly, the policy that solves player 2’s problem is

𝐹2𝑡 = (𝑄2 + 𝛽𝐵′
2𝒟2(𝑃2𝑡+1)𝐵2)−1(𝛽𝐵′

2𝒟2(𝑃2𝑡+1)Λ2𝑡 + Γ2𝑡) (21.8)

where 𝑃2𝑡 solves

𝑃2𝑡 = Π2𝑡 − (𝛽𝐵′
2𝒟2(𝑃2𝑡+1)Λ2𝑡 + Γ2𝑡)′(𝑄2 + 𝛽𝐵′

2𝒟2(𝑃2𝑡+1)𝐵2)−1(𝛽𝐵′
2𝒟2(𝑃2𝑡+1)Λ2𝑡 + Γ2𝑡)+

𝛽Λ′
2𝑡𝒟2(𝑃2𝑡+1)Λ2𝑡

(21.9)

Here in all cases 𝑡 = 𝑡0, … , 𝑡1 − 1 and the terminal conditions are 𝑃𝑖𝑡1
= 0.

The solution procedure is to use equations (21.6), (21.7), (21.8), and (21.9), and “work backwards” from time 𝑡1 − 1.
Since we’re working backwards, 𝑃1𝑡+1 and 𝑃2𝑡+1 are taken as given at each stage.
Moreover, since

• some terms on the right-hand side of (21.6) contain 𝐹2𝑡

• some terms on the right-hand side of (21.8) contain 𝐹1𝑡

we need to solve these 𝑘1 + 𝑘2 equations simultaneously.

21.2.3 Key Insight

As in Markov perfect equilibrium, a key insight here is that equations (21.6) and (21.8) are linear in 𝐹1𝑡 and 𝐹2𝑡.
After these equations have been solved, we can take 𝐹𝑖𝑡 and solve for 𝑃𝑖𝑡 in (21.7) and (21.9).
Notice how 𝑗’s control law 𝐹𝑗𝑡 is a function of {𝐹𝑖𝑠, 𝑠 ≥ 𝑡, 𝑖 ≠ 𝑗}.
Thus, agent 𝑖’s choice of {𝐹𝑖𝑡; 𝑡 = 𝑡0, … , 𝑡1 − 1} influences agent 𝑗’s choice of control laws.
However, in the Markov perfect equilibrium of this game, each agent is assumed to ignore the influence that his choice
exerts on the other agent’s choice.
After these equations have been solved, we can also deduce associated sequences of worst-case shocks.
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21.2.4 Worst-case Shocks

For agent 𝑖 the maximizing or worst-case shock 𝑣𝑖𝑡 is

𝑣𝑖𝑡 = 𝐾𝑖𝑡𝑥𝑡

where

𝐾𝑖𝑡 = 𝜃−1
𝑖 (𝐼 − 𝜃−1

𝑖 𝐶′𝑃𝑖,𝑡+1𝐶)−1𝐶′𝑃𝑖,𝑡+1(𝐴 − 𝐵1𝐹𝑖𝑡 − 𝐵2𝐹2𝑡)

21.2.5 Infinite Horizon

We often want to compute the solutions of such games for infinite horizons, in the hope that the decision rules 𝐹𝑖𝑡 settle
down to be time-invariant as 𝑡1 → +∞.
In practice, we usually fix 𝑡1 and compute the equilibrium of an infinite horizon game by driving 𝑡0 → −∞.
This is the approach we adopt in the next section.

21.2.6 Implementation

We use the function nnash_robust to compute a Markov perfect equilibrium of the infinite horizon linear quadratic dy-
namic game with robust planers in the manner described above.

21.3 Application

21.3.1 A Duopoly Model

Without concerns for robustness, the model is identical to the duopoly model from theMarkov perfect equilibrium lecture.
To begin, we briefly review the structure of that model.
Two firms are the only producers of a good the demand for which is governed by a linear inverse demand function

𝑝 = 𝑎0 − 𝑎1(𝑞1 + 𝑞2) (21.10)

Here 𝑝 = 𝑝𝑡 is the price of the good, 𝑞𝑖 = 𝑞𝑖𝑡 is the output of firm 𝑖 = 1, 2 at time 𝑡 and 𝑎0 > 0, 𝑎1 > 0.
In (21.10) and what follows,

• the time subscript is suppressed when possible to simplify notation
• ̂𝑥 denotes a next period value of variable 𝑥

Each firm recognizes that its output affects total output and therefore the market price.
The one-period payoff function of firm 𝑖 is price times quantity minus adjustment costs:

𝜋𝑖 = 𝑝𝑞𝑖 − 𝛾( ̂𝑞𝑖 − 𝑞𝑖)2, 𝛾 > 0, (21.11)

Substituting the inverse demand curve (21.10) into (21.11) lets us express the one-period payoff as

𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) = 𝑎0𝑞𝑖 − 𝑎1𝑞2
𝑖 − 𝑎1𝑞𝑖𝑞−𝑖 − 𝛾( ̂𝑞𝑖 − 𝑞𝑖)2, (21.12)

where 𝑞−𝑖 denotes the output of the firm other than 𝑖.
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The objective of the firm is to maximize ∑∞
𝑡=0 𝛽𝑡𝜋𝑖𝑡.

Firm 𝑖 chooses a decision rule that sets next period quantity ̂𝑞𝑖 as a function 𝑓𝑖 of the current state (𝑞𝑖, 𝑞−𝑖).
This completes our review of the duopoly model without concerns for robustness.
Now we activate robustness concerns of both firms.
To map a robust version of the duopoly model into coupled robust linear-quadratic dynamic programming problems, we
again define the state and controls as

𝑥𝑡 ∶= ⎡⎢
⎣

1
𝑞1𝑡
𝑞2𝑡

⎤⎥
⎦

and 𝑢𝑖𝑡 ∶= 𝑞𝑖,𝑡+1 − 𝑞𝑖𝑡, 𝑖 = 1, 2

If we write

𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡

where 𝑄1 = 𝑄2 = 𝛾,

𝑅1 ∶= ⎡⎢
⎣

0 − 𝑎0
2 0

− 𝑎0
2 𝑎1

𝑎1
2

0 𝑎1
2 0

⎤⎥
⎦

and 𝑅2 ∶= ⎡⎢
⎣

0 0 − 𝑎0
2

0 0 𝑎1
2

− 𝑎0
2

𝑎1
2 𝑎1

⎤⎥
⎦

then we recover the one-period payoffs (21.11) for the two firms in the duopoly model.
The law of motion for the state 𝑥𝑡 is 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 where

𝐴 ∶= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, 𝐵1 ∶= ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝐵2 ∶= ⎡⎢
⎣

0
0
1
⎤⎥
⎦

A robust decision rule of firm 𝑖 will take the form 𝑢𝑖𝑡 = −𝐹𝑖𝑥𝑡, inducing the following closed-loop system for the
evolution of 𝑥 in the Markov perfect equilibrium:

𝑥𝑡+1 = (𝐴 − 𝐵1𝐹1 − 𝐵1𝐹2)𝑥𝑡 (21.13)

21.3.2 Parameters and Solution

Consider the duopoly model with parameter values of:
• 𝑎0 = 10
• 𝑎1 = 2
• 𝛽 = 0.96
• 𝛾 = 12

From these, we computed the infinite horizon MPE without robustness using the code

import numpy as np
import quantecon as qe

# Parameters
a0 = 10.0
a1 = 2.0
β = 0.96

(continues on next page)
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(continued from previous page)

γ = 12.0

# In LQ form
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])

R1 = [[ 0., -a0 / 2, 0.],
[-a0 / 2., a1, a1 / 2.],
[ 0, a1 / 2., 0.]]

R2 = [[ 0., 0., -a0 / 2],
[ 0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

# Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

# Display policies
print("Computed policies for firm 1 and firm 2:\n")
print(f"F1 = {F1}")
print(f"F2 = {F2}")
print("\n")

Computed policies for firm 1 and firm 2:

F1 = [[-0.66846615 0.29512482 0.07584666]]
F2 = [[-0.66846615 0.07584666 0.29512482]]

Markov Perfect Equilibrium with Robustness

We add robustness concerns to the Markov Perfect Equilibrium model by extending the function qe.nnash (link) into
a robustness version by adding the maximization operator 𝒟(𝑃) into the backward induction.
The MPE with robustness function is nnash_robust.
The function’s code is as follows

def nnash_robust(A, C, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2,
θ1, θ2, beta=1.0, tol=1e-8, max_iter=1000):

"""
Compute the limit of a Nash linear quadratic dynamic game with
robustness concern.

In this problem, player i minimizes
.. math::

\sum_{t=0}^{\infty}

(continues on next page)
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(continued from previous page)

\left\{
x_t' r_i x_t + 2 x_t' w_i
u_{it} +u_{it}' q_i u_{it} + u_{jt}' s_i u_{jt} + 2 u_{jt}'
m_i u_{it}

\right\}
subject to the law of motion
.. math::

x_{it+1} = A x_t + b_1 u_{1t} + b_2 u_{2t} + C w_{it+1}
and a perceived control law :math:`u_j(t) = - f_j x_t` for the other
player.

The player i also concerns about the model misspecification,
and maximizes
.. math::

\sum_{t=0}^{\infty}
\left\{

\beta^{t+1} \theta_{i} w_{it+1}'w_{it+1}
\right\}

The solution computed in this routine is the :math:`f_i` and
:math:`P_i` of the associated double optimal linear regulator
problem.

Parameters
----------
A : scalar(float) or array_like(float)

Corresponds to the MPE equations, should be of size (n, n)
C : scalar(float) or array_like(float)

As above, size (n, c), c is the size of w
B1 : scalar(float) or array_like(float)

As above, size (n, k_1)
B2 : scalar(float) or array_like(float)

As above, size (n, k_2)
R1 : scalar(float) or array_like(float)

As above, size (n, n)
R2 : scalar(float) or array_like(float)

As above, size (n, n)
Q1 : scalar(float) or array_like(float)

As above, size (k_1, k_1)
Q2 : scalar(float) or array_like(float)

As above, size (k_2, k_2)
S1 : scalar(float) or array_like(float)

As above, size (k_1, k_1)
S2 : scalar(float) or array_like(float)

As above, size (k_2, k_2)
W1 : scalar(float) or array_like(float)

As above, size (n, k_1)
W2 : scalar(float) or array_like(float)

As above, size (n, k_2)
M1 : scalar(float) or array_like(float)

As above, size (k_2, k_1)
M2 : scalar(float) or array_like(float)

As above, size (k_1, k_2)
θ1 : scalar(float)

Robustness parameter of player 1
θ2 : scalar(float)

(continues on next page)
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Robustness parameter of player 2
beta : scalar(float), optional(default=1.0)

Discount factor
tol : scalar(float), optional(default=1e-8)

This is the tolerance level for convergence
max_iter : scalar(int), optional(default=1000)

This is the maximum number of iterations allowed

Returns
-------
F1 : array_like, dtype=float, shape=(k_1, n)

Feedback law for agent 1
F2 : array_like, dtype=float, shape=(k_2, n)

Feedback law for agent 2
P1 : array_like, dtype=float, shape=(n, n)

The steady-state solution to the associated discrete matrix
Riccati equation for agent 1

P2 : array_like, dtype=float, shape=(n, n)
The steady-state solution to the associated discrete matrix
Riccati equation for agent 2

"""

# Unload parameters and make sure everything is a matrix
params = A, C, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2
params = map(np.asmatrix, params)
A, C, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2 = params

# Multiply A, B1, B2 by sqrt(β) to enforce discounting
A, B1, B2 = [np.sqrt(β) * x for x in (A, B1, B2)]

# Initial values
n = A.shape[0]
k_1 = B1.shape[1]
k_2 = B2.shape[1]

v1 = np.eye(k_1)
v2 = np.eye(k_2)
P1 = np.eye(n) * 1e-5
P2 = np.eye(n) * 1e-5
F1 = np.random.randn(k_1, n)
F2 = np.random.randn(k_2, n)

for it in range(max_iter):
# Update
F10 = F1
F20 = F2

I = np.eye(C.shape[1])

# D1(P1)
# Note: INV1 may not be solved if the matrix is singular
INV1 = solve(θ1 * I - C.T @ P1 @ C, I)
D1P1 = P1 + P1 @ C @ INV1 @ C.T @ P1

(continues on next page)
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# D2(P2)
# Note: INV2 may not be solved if the matrix is singular
INV2 = solve(θ2 * I - C.T @ P2 @ C, I)
D2P2 = P2 + P2 @ C @ INV2 @ C.T @ P2

G2 = solve(Q2 + B2.T @ D2P2 @ B2, v2)
G1 = solve(Q1 + B1.T @ D1P1 @ B1, v1)
H2 = G2 @ B2.T @ D2P2
H1 = G1 @ B1.T @ D1P1

# Break up the computation of F1, F2
F1_left = v1 - (H1 @ B2 + G1 @ M1.T) @ (H2 @ B1 + G2 @ M2.T)
F1_right = H1 @ A + G1 @ W1.T - \

(H1 @ B2 + G1 @ M1.T) @ (H2 @ A + G2 @ W2.T)
F1 = solve(F1_left, F1_right)
F2 = H2 @ A + G2 @ W2.T - (H2 @ B1 + G2 @ M2.T) @ F1

Λ1 = A - B2 @ F2
Λ2 = A - B1 @ F1
Π1 = R1 + F2.T @ S1 @ F2
Π2 = R2 + F1.T @ S2 @ F1
Γ1 = W1.T - M1.T @ F2
Γ2 = W2.T - M2.T @ F1

# Compute P1 and P2
P1 = Π1 - (B1.T @ D1P1 @ Λ1 + Γ1).T @ F1 + \

Λ1.T @ D1P1 @ Λ1
P2 = Π2 - (B2.T @ D2P2 @ Λ2 + Γ2).T @ F2 + \

Λ2.T @ D2P2 @ Λ2

dd = np.max(np.abs(F10 - F1)) + np.max(np.abs(F20 - F2))

if dd < tol: # success!
break

else:
raise ValueError(f'No convergence: Iteration limit of {max_iter} \

reached in nnash')

return F1, F2, P1, P2

21.3.3 Some Details

Firm 𝑖 wants to minimize
𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡 + 𝑢′
−𝑖𝑡𝑆𝑖𝑢−𝑖𝑡 + 2𝑥′

𝑡𝑊𝑖𝑢𝑖𝑡 + 2𝑢′
−𝑖𝑡𝑀𝑖𝑢𝑖𝑡}

where

𝑥𝑡 ∶= ⎡⎢
⎣

1
𝑞1𝑡
𝑞2𝑡

⎤⎥
⎦

and 𝑢𝑖𝑡 ∶= 𝑞𝑖,𝑡+1 − 𝑞𝑖𝑡, 𝑖 = 1, 2
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and

𝑅1 ∶= ⎡⎢
⎣

0 − 𝑎0
2 0

− 𝑎0
2 𝑎1

𝑎1
2

0 𝑎1
2 0

⎤⎥
⎦
, 𝑅2 ∶= ⎡⎢

⎣

0 0 − 𝑎0
2

0 0 𝑎1
2

− 𝑎0
2

𝑎1
2 𝑎1

⎤⎥
⎦
, 𝑄1 = 𝑄2 = 𝛾, 𝑆1 = 𝑆2 = 0, 𝑊1 = 𝑊2 = 0, 𝑀1 = 𝑀2 = 0

The parameters of the duopoly model are:
• 𝑎0 = 10
• 𝑎1 = 2
• 𝛽 = 0.96
• 𝛾 = 12

# Parameters
a0 = 10.0
a1 = 2.0
β = 0.96
γ = 12.0

# In LQ form
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])

R1 = [[ 0., -a0 / 2, 0.],
[-a0 / 2., a1, a1 / 2.],
[ 0, a1 / 2., 0.]]

R2 = [[ 0., 0., -a0 / 2],
[ 0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

Consistency Check

We first conduct a comparison test to check if nnash_robust agrees with qe.nnash in the non-robustness case in
which each 𝜃𝑖 ≈ +∞

# Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

# Solve using nnash_robust
F1r, F2r, P1r, P2r = nnash_robust(A, np.zeros((3, 1)), B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1, M2, 1e-10,
1e-10, beta=β)

print('F1 and F1r should be the same: ', np.allclose(F1, F1r))
print('F2 and F2r should be the same: ', np.allclose(F1, F1r))

(continues on next page)
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print('P1 and P1r should be the same: ', np.allclose(P1, P1r))
print('P2 and P2r should be the same: ', np.allclose(P1, P1r))

F1 and F1r should be the same: True
F2 and F2r should be the same: True
P1 and P1r should be the same: True
P2 and P2r should be the same: True

We can see that the results are consistent across the two functions.

Comparative Dynamics under Baseline Transition Dynamics

Wewant to compare the dynamics of price and output under the baseline MPEmodel with those under the baseline model
under the robust decision rules within the robust MPE.
This means that we simulate the state dynamics under the MPE equilibrium closed-loop transition matrix

𝐴𝑜 = 𝐴 − 𝐵1𝐹1 − 𝐵2𝐹2

where 𝐹1 and 𝐹2 are the firms’ robust decision rules within the robust markov_perfect equilibrium
• by simulating under the baseline model transition dynamics and the robust MPE rules we are in assuming that at
the end of the day firms’ concerns about misspecification of the baseline model do not materialize.

• a short way of saying this is that misspecification fears are all ‘just in the minds’ of the firms.
• simulating under the baseline model is a common practice in the literature.
• note that some assumption about the model that actually governs the data has to be made in order to create a
simulation.

• later we will describe the (erroneous) beliefs of the two firms that justify their robust decisions as best responses to
transition laws that are distorted relative to the baseline model.

After simulating 𝑥𝑡 under the baseline transition dynamics and robust decision rules 𝐹𝑖, 𝑖 = 1, 2, we extract and plot
industry output 𝑞𝑡 = 𝑞1𝑡 + 𝑞2𝑡 and price 𝑝𝑡 = 𝑎0 − 𝑎1𝑞𝑡.
Here we set the robustness and volatility matrix parameters as follows:

• 𝜃1 = 0.02
• 𝜃2 = 0.04

• 𝐶 = ⎛⎜
⎝

0
0.01
0.01

⎞⎟
⎠

Because we have set 𝜃1 < 𝜃2 < +∞ we know that
• both firms fear that the baseline specification of the state transition dynamics are incorrect.
• firm 1 fears misspecification more than firm 2.

# Robustness parameters and matrix
C = np.asmatrix([[0], [0.01], [0.01]])
θ1 = 0.02
θ2 = 0.04
n = 20

(continues on next page)
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# Solve using nnash_robust
F1r, F2r, P1r, P2r = nnash_robust(A, C, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1, M2,
θ1, θ2, beta=β)

# MPE output and price
AF = A - B1 @ F1 - B2 @ F2
x = np.empty((3, n))
x[:, 0] = 1, 1, 1
for t in range(n - 1):

x[:, t + 1] = AF @ x[:, t]
q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

# RMPE output and price
AO = A - B1 @ F1r - B2 @ F2r
xr = np.empty((3, n))
xr[:, 0] = 1, 1, 1
for t in range(n - 1):

xr[:, t+1] = AO @ xr[:, t]
qr1 = xr[1, :]
qr2 = xr[2, :]
qr = qr1 + qr2 # Total output, RMPE
pr = a0 - a1 * qr # Price, RMPE

# RMPE heterogeneous beliefs output and price
I = np.eye(C.shape[1])
INV1 = solve(θ1 * I - C.T @ P1 @ C, I)
K1 = P1 @ C @ INV1 @ C.T @ P1 @ AO
AOCK1 = AO + C.T @ K1

INV2 = solve(θ2 * I - C.T @ P2 @ C, I)
K2 = P2 @ C @ INV2 @ C.T @ P2 @ AO
AOCK2 = AO + C.T @ K2
xrp1 = np.empty((3, n))
xrp2 = np.empty((3, n))
xrp1[:, 0] = 1, 1, 1
xrp2[:, 0] = 1, 1, 1
for t in range(n - 1):

xrp1[:, t + 1] = AOCK1 @ xrp1[:, t]
xrp2[:, t + 1] = AOCK2 @ xrp2[:, t]

qrp11 = xrp1[1, :]
qrp12 = xrp1[2, :]
qrp21 = xrp2[1, :]
qrp22 = xrp2[2, :]
qrp1 = qrp11 + qrp12 # Total output, RMPE from player 1's belief
qrp2 = qrp21 + qrp22 # Total output, RMPE from player 2's belief
prp1 = a0 - a1 * qrp1 # Price, RMPE from player 1's belief
prp2 = a0 - a1 * qrp2 # Price, RMPE from player 2's belief
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The following code prepares graphs that compare market-wide output 𝑞1𝑡 + 𝑞2𝑡 and the price of the good 𝑝𝑡 under
equilibrium decision rules 𝐹𝑖, 𝑖 = 1, 2 from an ordinary Markov perfect equilibrium and the decision rules under a
Markov perfect equilibrium with robust firms with multiplier parameters 𝜃𝑖, 𝑖 = 1, 2 set as described above.
Both industry output and price are under the transition dynamics associated with the baseline model; only the decision
rules 𝐹𝑖 differ across the two equilibrium objects presented.

fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(q, 'g-', lw=2, alpha=0.75, label='MPE output')
ax.plot(qr, 'm-', lw=2, alpha=0.75, label='RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(2, 4))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]
ax.plot(p, 'g-', lw=2, alpha=0.75, label='MPE price')
ax.plot(pr, 'm-', lw=2, alpha=0.75, label='RMPE price')
ax.set(ylabel="price", xlabel="time")
ax.legend(loc='upper right', frameon=0)
plt.show()
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Under the dynamics associated with the baseline model, the price path is higher with the Markov perfect equilibrium
robust decision rules than it is with decision rules for the ordinary Markov perfect equilibrium.
So is the industry output path.
To dig a little beneath the forces driving these outcomes, we want to plot 𝑞1𝑡 and 𝑞2𝑡 in the Markov perfect equilibrium
with robust firms and to compare them with corresponding objects in the Markov perfect equilibrium without robust firms

fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(q1, 'g-', lw=2, alpha=0.75, label='firm 1 MPE output')
ax.plot(qr1, 'b-', lw=2, alpha=0.75, label='firm 1 RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(1, 2))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]

(continues on next page)
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ax.plot(q2, 'g-', lw=2, alpha=0.75, label='firm 2 MPE output')
ax.plot(qr2, 'r-', lw=2, alpha=0.75, label='firm 2 RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(1, 2))
ax.legend(loc='upper left', frameon=0)
plt.show()

Evidently, firm 1’s output path is substantially lower when firms are robust firms while firm 2’s output path is virtually the
same as it would be in an ordinary Markov perfect equilibrium with no robust firms.
Recall that we have set 𝜃1 = .02 and 𝜃2 = .04, so that firm 1 fears misspecification of the baseline model substantially
more than does firm 2

• but also please notice that firm 2’s behavior in the Markov perfect equilibrium with robust firms responds to the
decision rule 𝐹1𝑥𝑡 employed by firm 1.

• thus it is something of a coincidence that its output is almost the same in the two equilibria.

538 Chapter 21. Robust Markov Perfect Equilibrium



Tools and Techniques for Computational Economics

Larger concerns about misspecification induce firm 1 to be more cautious than firm 2 in predicting market price and the
output of the other firm.
To explore this, we study next how ex-post the two firms’ beliefs about state dynamics differ in the Markov perfect equi-
librium with robust firms.
(by ex-post we mean after extremization of each firm’s intertemporal objective)

Heterogeneous Beliefs

As before, let 𝐴𝑜 = 𝐴 − 𝐵_1𝐹_1𝑟 − 𝐵_2𝐹_2𝑟, where in a robust MPE, 𝐹 𝑟
𝑖 is a robust decision rule for firm 𝑖.

Worst-case forecasts of 𝑥𝑡 starting from 𝑡 = 0 differ between the two firms.
This means that worst-case forecasts of industry output 𝑞1𝑡 + 𝑞2𝑡 and price 𝑝𝑡 also differ between the two firms.
To find these worst-case beliefs, we compute the following three “closed-loop” transition matrices

• 𝐴𝑜

• 𝐴𝑜 + 𝐶𝐾_1
• 𝐴𝑜 + 𝐶𝐾_2

We call the first transition law, namely, 𝐴𝑜, the baseline transition under firms’ robust decision rules.
We call the second and third worst-case transitions under robust decision rules for firms 1 and 2.
From {𝑥𝑡} paths generated by each of these transition laws, we pull off the associated price and total output sequences.
The following code plots them

print('Baseline Robust transition matrix AO is: \n', np.round(AO, 3))
print('Player 1\'s worst-case transition matrix AOCK1 is: \n', \
np.round(AOCK1, 3))
print('Player 2\'s worst-case transition matrix AOCK2 is: \n', \
np.round(AOCK2, 3))

Baseline Robust transition matrix AO is:
[[ 1. 0. 0. ]
[ 0.666 0.682 -0.074]
[ 0.671 -0.071 0.694]]

Player 1's worst-case transition matrix AOCK1 is:
[[ 0.998 0.002 0. ]
[ 0.664 0.685 -0.074]
[ 0.669 -0.069 0.694]]

Player 2's worst-case transition matrix AOCK2 is:
[[ 0.999 0. 0.001]
[ 0.665 0.683 -0.073]
[ 0.67 -0.071 0.695]]

# == Plot == #
fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(qrp1, 'b--', lw=2, alpha=0.75,

label='RMPE worst-case belief output player 1')
ax.plot(qrp2, 'r:', lw=2, alpha=0.75,

label='RMPE worst-case belief output player 2')

(continues on next page)
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ax.plot(qr, 'm-', lw=2, alpha=0.75, label='RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(2, 4))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]
ax.plot(prp1, 'b--', lw=2, alpha=0.75,

label='RMPE worst-case belief price player 1')
ax.plot(prp2, 'r:', lw=2, alpha=0.75,

label='RMPE worst-case belief price player 2')
ax.plot(pr, 'm-', lw=2, alpha=0.75, label='RMPE price')
ax.set(ylabel="price", xlabel="time")
ax.legend(loc='upper right', frameon=0)
plt.show()

We see from the above graph that under robustness concerns, player 1 and player 2 have heterogeneous beliefs about total
output and the goods price even though they share the same baseline model and information
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• firm 1 thinks that total output will be higher and price lower than does firm 2
• this leads firm 1 to produce less than firm 2

These beliefs justify (or rationalize) the Markov perfect equilibrium robust decision rules.
This means that the robust rules are the unique optimal rules (or best responses) to the indicated worst-case transition
dynamics.
([Hansen and Sargent, 2008] discuss how this property of robust decision rules is connected to the concept of admissibility
in Bayesian statistical decision theory)
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CHAPTER

TWENTYTWO

TROUBLESHOOTING

This page is for readers experiencing errors when running the code from the lectures.

22.1 Fixing Your Local Environment

The basic assumption of the lectures is that code in a lecture should execute whenever
1. it is executed in a Jupyter notebook and
2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?
Assuming that you have, the most common source of problems for our readers is that their Anaconda distribution is not
up to date.
Here’s a useful article on how to update Anaconda.
Another option is to simply remove Anaconda and reinstall.
You also need to keep the external code libraries, such as QuantEcon.py up to date.
For this task you can either

• use conda install -y quantecon on the command line, or
• execute !conda install -y quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.
First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for each lecture

Second, you can report an issue, so we can try to fix your local set up.
We like getting feedback on the lectures so please don’t hesitate to get in touch.
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22.2 Reporting an Issue

One way to give feedback is to raise an issue through our issue tracker.
Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can
provide.
Another feedback option is to use our discourse forum.
Finally, you can provide direct feedback to contact@quantecon.org
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CHAPTER

TWENTYFOUR

EXECUTION STATISTICS

This table contains the latest execution statistics.

Document Modified Method Run Time (s) Status
additive_functionals 2024-06-13 03:26 cache 18.63 ✅
arma 2024-06-13 03:26 cache 8.31 ✅
classical_filtering 2024-06-13 03:26 cache 1.28 ✅
discrete_dp 2024-06-13 03:27 cache 30.75 ✅
eig_circulant 2024-06-13 03:27 cache 3.39 ✅
entropy 2024-06-13 03:27 cache 0.99 ✅
estspec 2024-06-13 03:27 cache 5.88 ✅
finite_markov 2024-06-13 03:27 cache 6.52 ✅
five_preferences 2024-06-13 03:27 cache 14.95 ✅
intro 2024-06-13 03:27 cache 1.02 ✅
linear_algebra 2024-06-13 03:27 cache 2.01 ✅
lp_intro 2024-06-13 03:28 cache 1.52 ✅
lu_tricks 2024-06-13 03:28 cache 2.06 ✅
newton_method 2024-06-13 03:29 cache 66.12 ✅
opt_transport 2024-06-13 03:29 cache 16.31 ✅
qr_decomp 2024-06-13 03:29 cache 1.04 ✅
rob_markov_perf 2024-06-13 03:29 cache 5.44 ✅
robustness 2024-06-13 03:29 cache 6.48 ✅
stationary_densities 2024-06-13 03:29 cache 10.0 ✅
status 2024-06-13 03:29 cache 4.44 ✅
svd_intro 2024-06-13 03:29 cache 1.4 ✅
troubleshooting 2024-06-13 03:27 cache 1.02 ✅
var_dmd 2024-06-13 03:27 cache 1.02 ✅
von_neumann_model 2024-06-13 03:29 cache 2.02 ✅
zreferences 2024-06-13 03:27 cache 1.02 ✅

These lectures are built on linux instances through github actions.
These lectures are using the following python version

!python --version

Python 3.11.7

and the following package versions
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